
Infinitely wide transfomers ( ) admit kernel limits, where Bayesian inference is 
described by the regression with the NNGP kernel and learning with gradient flow is 
described by regression with the NTK [1].

dk, Nh → ∞

From the predictor expression, we see the sample complexity for  is .

We simplify the eigenvalue problem by capitalizing on the permutation symmetry 
present in transformer models with learned positional encoding. 

Proposition. An operator (such as ) that is symmetric under the action of a group  via a faithful 
representation , such that  can be decomposed into 
degenerate blocks. Each one of the blocks corresponds to an irrep  of  and its eigenvalue is 
bounded by the dimension of the irrep . 
Characterizing the irreps of the symmetric group over the polynomials of one-hot 
encoded vectors allows us to bound the sample complexity scaling with . 
Theorem. The space of homogeneous multilinear polynomials in n variables of degree d can be 
fully decomposed into unique irreps of the symmetric group  labeled by the 
partitions  for . The  irrep has dimension . 

The result is an asymptotic bound on the sample complexity:  
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Evidence for permutation symmetry in WikiText

Contributions. 
• We give explicit analytical predictions for the generalization performance of a NN 

with linear attention at the kernel limit. We show how irreducible representations of 
the symmetric group can be built and used to predict learnability in this case.


• We extend our results to a transformer block with standard softmax attention. We 
show experimentally the learnability bounds found based on the dimension of the 
relevant irreducible representations are tight.


• We analyze WikiText-2 and show evidence for permutation symmetry in its principal 
components, suggesting that the toolbox presented can be of use on natural 
language datasets.
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Background and Contributions
Transformers are widely used and show state-of-the-art performance, yet our understanding of them is still fragmented and 
lacking. We study inductive bias in transformers in the infinitely over-parameterized kernel limit and argue transformers tend to 
be biased towards more permutation symmetric functions in sequence space.

Experimental Results
The top figure shows the predictions for the loss as a function of  and  together with 
exact Bayesian inference. We find good agreement both on train and test (OOD).

In the middle figure the spectrum of the kernel, for a NN with softmax attention and linear 
MLP is shown. The eigenvalues take the maximum scaling possible based on the 
degeneracy of the irrep . 

In the bottom figure, we probe the permutation symmetry in the first-order correlations of 
WikiText-2. We find a large similarity in the  irrep ( ), that does not exist with 
the  irrep ( ). The spectrum of the different correlation matrices inside the 

 irrep is almost identical as well, as indicated by the eigenvalue CDF in the same 
figure. This similarity, again, does not exist between the two irreps (i.e. ).
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Kernel eigenvalues scaling law
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Illustration of diagonalization using symmetries

Network. Embedding and learned positional encoding   multi-head self-attention 
with a non-linearity   one hidden layer MLP with non-linearity   linear readout. 
Dataset. Each of the  samples is a sequence of  one-hot encoded tokens drawn 
from Hidden Markov Model. The HMM is drawn from a mixture for each sample. 
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