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In-context learning: Ability of the model to perform
previously unseen task solely from the input context

Previous work

Theory: In-context learning emerges from
specific data properties!

Demonstrationsi{

Predicted sample —>

"Review: Best pizza ever! Sentiment: Positive
Review: You can get decent sushi for the same price! Sentiment: Negative m "Positive"
Review: What a lovely evening spent in a queue for cold pizza piece. Sentiment:"

Input prompt Label

e Hahn & Goyal [1]: ICL emerges in Language models

thanks to a shared compositionality of languages
e Chan+ [2]: ICL needs statistical burstiness of data,

(a co-occurrence of same concepts in clusters)

o Xie+ [3]: ICL requires training data that condition

correct prediction on shared latent concepts

All these works train small models able of ICL in
synthetic, small-data settings

High level A

Data properties

Scale

Domain/Task/Lang coverage

Practice: In-context learning emerges
with scale!

e Brown+ [4] (GPT3) first uncovers ICL ability
by scaling model size
e Min+ [5], Sanh+ [6], Wang+ [8] (, ..

.) scale

Low level Y Predictability/Co-dependence

What skills can the model learn from pre-training samples?

1. "Some sorts of [MASK]"

fruit

2. "Some sorts of fruit overripe faster than [MASK]"

others
3. "(+) Species of banana pertain over two
months, but most apples will [MASK]"

last

4."

weeks
Experimental setup
e Few-shot instruction training format:

[x1, Y1, {sep), ...

e Demonstrations sharing a specific reasoning

concept (Informativeness condition)

e Diverse demonstrations (Non-triviality condition)

e Baselines:

(+) but most apples will last less than two [MASK]"

ambiguous

pattern matching

conditioned

by contextual

concept (overripe)

pattern matching + cond.
by contextual concept

already plcked

demonstrations
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o Uncontrolled demonstrations selection (Tk-Random)

o Previous Instruction-tuned models (TO, Flan, Tk-Instr)

Training data setup

e Existing datasets with annotated concepts are not

big enough for training

e \We pre-train on a synthetic TeaBReAC [10] dataset
which annotates reasoning chains (train concepts)

* We fine-tune the resulting model on AdversarialQA
[11] to restore the ability to work with natural text

Evaluations

Natural-Instructions: All tasks

s i iy il

(z2,y2) to be picked

All samples

Analyses

Unseen TeaBReAC concept

Duplicity/Diversity

instruction format

of-Tought tasks

a diversity of tasks and promts in

— Some samples are more useful than others
— Most next-token prediction samples are trivial

or ambiguous

Can the upscaling of concept-dependent data

improve the quality of ICL?

predicted sample

newly picked demonstratlons

Lpred
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1. Informativeness condition

Natural concepts: all

argmin(c;)

o Wei+ [9] (FLAN) extend training with Chain-

predicted sample
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2. Non-triviality condition

Fig: Selection of demonstrations in our implementation of Concept-aware Training (CoAT)

—Are concept-aware models better at

Tk-CoAT-1B 41 13 6 - Tk-Random-1B
Tk-CoAT-3B 45 14 1 -Tk-Random-3B
Tk-Info-3B 44 15 1 -Tk-Random-3B
Tk-CoAT-3B 19 40 1 -Tk-Info-3B
Natural-Instructions: Reasoning tasks
Tk-CoAT-1B 12 6 2 - Tk-Random-1B
Tk-CoAT-3B 19 1 -Tk-Random-3B
Tk-Info-3B 18 2 - Tk-Random-3B
Tk-CoAT-3B 3 16 1 -Tk-Info-3B
Left wins similar Right wins
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Win rates: Comparison to baselines on (up) all and (down)
reasoning tasks of Natural Instructions collection [8]:

(1) Uncontrolled demo construction (Tk-Random) and

(2) selection with only Informativeness condition (Tk-Info).
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