

Università di Pisa

ICLR 2024 WORKSHOP ON AI 4 DIFFERENTIAL EQUATIONS IN SCIENCE

MultiSTOP: Solving Functional Equations with Reinforcement Learning

Grant Agreement 101070918

<u>Alessandro Trenta</u>	Andrea Cossu	Davide Bacciu	Pietro Ferrero
alessandro.trenta@phd.unipi.it	andrea.cossu@di.unipi.it	davide.bacciu@di.unipi.it	pferrero@scgp.stonybrook.edu
CONTRIBUTIONS		RESULTS	
 MultiSTOP: an extension of the BootSTOP algorithm to solve functional equations with additional constraints. Analysis on a 1D physical model with no analytical solution. Discussion on the degeneracy problem for similar terms. 		 ID defect CFT in a 4D supersymmetric Yang-Mills theory. Model and results depend on parameter g. Weak coupling g ≤ 1: hardest case. 	
Problem		0.14 0.12 C2	0.20 C ₃
> Parametric functional equation $h(x) + \sum_{n \ge 1} C_n^2 F_{\Delta_n}(x)$	x) = 0	0.10 - 0.08 - 0.06 - 0.04 - 0.02 - 0.0	0.18 - 0.16 - 0.14 - 0.12 - 0.10 -
> Unknowns: $C_n^2 \ge 0$ and function particle $F_{\Delta_n}(x) = x^2 f_{\Delta_n}(1-x) + (x)$	arameters $\Delta_n \ge 0$. $(1-x)^2 f_{\Delta_n}(x)$	0.00 - • 0.2 0.4 0.6 0.8 1.0 g	0.08 0.06 0.2 0.4 0.6 0.8 1.0 g
> $f_{\Delta_n}(x)$ is analytic in x and Δ_n .		> Degeneracy: because $\Delta_2 \approx \Delta_3 \approx 2$, we have	
Two integral constraints ¹ with the same unknowns		$C_2^2 F_{\Delta_2} + C_3^2 F_{\Delta_3} \approx (C_2^2 + C_3^2) F_2$	
$\sum C_n^2 \int_{-\infty}^{\frac{1}{2}} (x^2 - x + 1) \frac{f_{\Delta_n}(x)}{x^2} \partial_x \log(x(1 - x)) dx = A_1$		\rightarrow Results on the sum are much better.	

$$\sum_{n \ge 1} C_n \int_0^\infty (x - x + 1) x^2 = 0_x \log(x(1 - x)) dx = A_1$$
$$\sum_{n \ge 1} C_n^2 \int_0^{\frac{1}{2}} \frac{f_{\Delta_n}(x)}{x^2} (2x - 1) dx = A_2$$

> These constraints **improve precision on unknowns**¹.

BootSTOP² algorithm

> Approximate with a **finite number** of terms $(n \le 10)$.

- Evaluate equation on a fixed set of N points.
- State: current guess of solution
 (C², Δ) = (C₁², C₂², ..., C₁₀², Δ₁, Δ₂, ..., Δ₁₀)
 Action: cyclically from 1 to 10, change (C_n², Δ_n).
 Reward: evaluate the equation on the current guess and the N points and take the squared norm ||E(C², Δ)||₂.
 1

$$R = \frac{1}{\|\boldsymbol{E}(\boldsymbol{C}^2, \boldsymbol{\Delta})\|_2}$$

RL algorithm: Soft Actor Critic³.

MultiSTOP

C²₇ → 0 as expected⁴.
 ▶ Results follow theoretical expectations⁴ (green line).

CONCLUSION

- Include additional constraints into the same framework.
- > Evaluate integral equations on the current guess:

$$I_1(C^2, \Delta) = \sum_{1 \le n \le 10} C_n^2 \operatorname{Int}_1[f_{\Delta_n}(x)] - A_1$$
$$I_2(C^2, \Delta) = \sum_{1 \le n \le 10} C_n^2 \operatorname{Int}_2[f_{\Delta_n}(x)] - A_2$$

> Take **absolute value** and include in the reward:

$$R_{1} = \frac{1}{\|E(C^{2}, \Delta)\|_{2} + w_{1}|I_{1}(C^{2}, \Delta)| + w_{2}|I_{2}(C^{2}, \Delta)|}$$

- $> R_1$ forces **together** the constraints.
- > Using MultiSTOP the relative error on C_1^2, C_2^2, C_3^2 is reduced between **2x to 10x**.

- Capacity to solve multiple parametric equations.
- Great improvements with multiple physical constraints.
- In case of degeneracy, other functional equations can be included (future work).
- If no degeneracy, precision is very high (red line).
- Applicable to functional equations and possibly PDEs using parametric basis functions.

References

¹Andrea Cavaglià, Nikolay Gromov, Julius Julius, and Michelangelo Preti. Bootstrability in defect CFT: integrated correlators and sharper bounds. Journal of High Energy Physics, 2022(5), may 2022. doi: 10.1007/jhep05(2022)164.

²Gergely Kàntor, Constantinos Papageorgakis, and Vasilis Niarchos. Solving conformal field theories with artificial intelligence. Physical Review Letters, 128(4), jan 2022

³Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. PMLR, 10–15 Jul 2018.

⁴Pietro Ferrero and Carlo Meneghelli. Unmixing the Wilson line defect CFT. Part I and part II, December 2023.