

UNIVERSITÀ DI PISA

ICLR 2024 WORKSHOP ON AI 4 DIFFERENTIAL EQUATIONS IN SCIENCE

MultiSTOP: Solving Functional Equations with Reinforcement Learning

BootSTOP² algorithm

- ➢ Capacity to solve **multiple parametric equations.**
- ➢ Great improvements with multiple physical constraints.
- ➢ In case of degeneracy, other functional equations can be included (future work).
- ➢ If no degeneracy, **precision is very high** (red line).
- ➢ Applicable to functional equations and possibly **PDEs using parametric basis functions.**

²Gergely Kàntor, Constantinos Papageorgakis, and Vasilis Niarchos. Solving conformal field theories with artificial intelligence. Physical Review Letters, 128(4), jan 2022

³Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. PMLR, 10–15 Jul 2018.

CONCLUSION

References

¹Andrea Cavaglià, Nikolay Gromov, Julius Julius, and Michelangelo Preti. Bootstrability in defect CFT: integrated correlators and sharper bounds. Journal of High Energy Physics, 2022(5), may 2022. doi: 10.1007/jhep05(2022)164.

 \triangleright Approximate with a **finite number** of terms ($n \leq 10$). ➢ **Evaluate** equation on a **fixed set** of points.

State: current guess of solution \mathcal{C}^{2} , Δ) = $(C_{1}^{2}, C_{2}^{2}, ..., C_{10}^{2}, \Delta_{1}, \Delta_{2}, ..., \Delta_{10})$ **►** Action: cyclically from 1 to 10, change (C_n^2, Δ_n) . ➢ **Reward:** evaluate the equation on the current guess and the N points and take the squared norm $\|E(\mathcal{C}^2,\Delta)\|$ $\overline{\mathbf{2}}$. 1

> ⁴Pietro Ferrero and Carlo Meneghelli. Unmixing the Wilson line defect CFT. Part I and part II, December 2023.

- $\triangleright R_1$ forces **together** the constraints.
- \triangleright Using **MultiSTOP** the relative error on C_1^2 , C_2^2 , C_3^2 is reduced between **2x to 10x**.

$$
\sum_{n\geq 1} c_n \int_0^{(x-\lambda+1)} x^{2} \frac{\partial_x \log(x)}{\partial x^{2}} dx = A_1
$$

$$
\sum_{n\geq 1} c_n^{2} \int_0^{\frac{1}{2}} \frac{f_{\Delta_n}(x)}{x^2} (2x-1) dx = A_2
$$

➢ These constraints **improve precision on unknowns**¹ **.**

$$
R = \frac{1}{\|E(C^2, \Delta)\|_2}
$$

▶ RL algorithm: Soft Actor Critic³.

MultiSTOP

- ➢ Include **additional constraints** into the same framework.
- ➢ **Evaluate** integral equations on the current guess:

$$
I_1(C^2, \Delta) = \sum_{1 \le n \le 10} C_n^2 \operatorname{Int}_1[f_{\Delta_n}(x)] - A_1
$$

$$
I_2(C^2, \Delta) = \sum_{1 \le n \le 10} C_n^2 \operatorname{Int}_2[f_{\Delta_n}(x)] - A_2
$$

➢ Take **absolute value** and include in the reward:

$$
R_1 = \frac{1}{\|E(C^2, \Delta)\|_2 + w_1 |I_1(C^2, \Delta)| + w_2 |I_2(C^2, \Delta)|}
$$

➢ Results follow theoretical expectations 4 (green line).

 $\triangleright C_7^2$ $g\rightarrow 4$ 0 as expected⁴.

Grant Agreement 101070918

