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RESULTS

➢ Capacity to solve multiple parametric equations.
➢ Great improvements with multiple physical constraints.
➢ In case of degeneracy, other functional equations can be 

included (future work).
➢ If no degeneracy, precision is very high (red line).
➢ Applicable to functional equations and possibly PDEs

using parametric basis functions.

CONCLUSION
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CONTRIBUTIONS

➢ Parametric functional equation

ℎ 𝑥 +

𝑛≥1
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2𝐹∆𝑛 𝑥 = 0

➢Unknowns: 𝐶𝑛
2 ≥ 0 and function parameters ∆𝑛≥ 0.

𝐹∆𝑛 𝑥 = 𝑥2𝑓∆𝑛 1 − 𝑥 + (1 − 𝑥)2𝑓∆𝑛 𝑥

➢ 𝒇∆𝒏 𝒙 is analytic in 𝑥 and ∆𝑛.

➢ Two integral constraints1 with the same unknowns
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➢ These constraints improve precision on unknowns1.

➢ Approximate with a finite number of terms (𝑛 ≤ 10).
➢ Evaluate equation on a fixed set of 𝑁 points.

➢ State: current guess of solution

𝑪𝟐, ∆ = (𝐶1
2 , 𝐶2

2 , … , 𝐶10
2 , ∆1 , ∆2 , … , ∆10)

➢Action: cyclically from 1 to 10, change (𝐶𝑛
2 , ∆𝑛).

➢ Reward: evaluate the equation on the current guess and 

the 𝑁 points and take the squared norm 𝑬 𝑪𝟐, ∆
𝟐

. 

𝑅 =
1

𝑬 𝑪𝟐, ∆ 𝟐
➢ RL algorithm: Soft Actor Critic3.

MultiSTOP

➢ Include additional constraints into the same framework.
➢ Evaluate integral equations on the current guess:

𝑰𝟏 𝑪𝟐, ∆ = 

1≤𝑛≤10

𝐶𝑛
2 Int1 𝑓∆𝑛 𝑥 − 𝐴1

𝑰𝟐 𝑪𝟐, ∆ = 

1≤𝑛≤10

𝐶𝑛
2 Int2 𝑓∆𝑛 𝑥 − 𝐴2

➢ Take absolute value and include in the reward:

𝑹𝟏 =
1

𝑬 𝑪𝟐 , ∆ 𝟐 +𝒘𝟏 𝑰𝟏 𝑪𝟐, ∆ + 𝒘𝟐 𝑰𝟐 𝑪𝟐, ∆
➢𝑹𝟏 forces together the constraints.
➢Using MultiSTOP the relative error on 𝐶1

2 ,𝐶2
2 , 𝐶3

2 is reduced 
between 2x to 10x.

➢ 1D defect CFT in a 4D supersymmetric Yang-Mills theory. 
Model and results depend on parameter 𝒈.

➢Weak coupling 𝒈 ≤ 𝟏: hardest case.

➢Degeneracy: because ∆2≈ ∆3≈ 2, we have

𝐶2
2𝐹∆2 + 𝐶3
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2)𝐹2
➢ Results on the sum are much better.

➢ Strong coupling 𝒈 ≥ 𝟏: 𝐶1
2 ,𝐶2

2 , 𝐶3
2 are known.

➢ 𝐶7
2

𝑔→4
0 as expected4.

➢ Results follow theoretical expectations4 (green line).
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➢ MultiSTOP: an extension of the BootSTOP algorithm to solve 
functional equations with additional constraints.

➢ Analysis on a 1D physical model with no analytical solution.
➢ Discussion on the degeneracy problem for similar terms.
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