
Optimizing Computationally Intensive Simulations Using a Biologically-
Inspired Acquisition Function and a Fourier Neural Operator Surrogate

Achieving optimal simulation results often requires 
adjusting several key control parameters by 
comparing many realizations of the intensive 
simulations. Manually tweaking multiple control 
parameters can be tedious and inefficient. To 
alleviate such obstacles in simulation studies, we 
found that differential evolution combined with 
Neural Network surrogates could effectively 
optimize simulations. The differential evolution 
samples the multi-dimensional optimization space 
following a multivariate Gaussian distribution. The 
samples collected may be used to train intelligent 
surrogate models such as a Fourier Neural Operator 
(FNO). Once a surrogate is constructed, it could 
further accelerate the sampling of the optimization 
search space. This methodology effectively 
optimized a hypersonic simulation modeled by 
systems of partial differential equations; it may 
also be extended to simulation optimization in 
other disciplines. 
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Fig. 6. Hypersonic simulation optimized after searching 
six control parameters driven by a stability criterion
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The current state of high-fidelity multi-physics 
simulation is marked by its computational 
intensity. Tweaking multiple control parameters 
often poses a significant challenge, making it 
difficult to converge quickly.

Multiple control parameters can influence each 
other, and the multi-dimensional parameter space 
can be complex to search.

This study investigates a scheme that 
• leverages both exploration and exploitation in 

the search space,
• systematically optimizes simulation results,
• efficiently automates the process and returns 

users with optimized control parameters.

Table 1. Control parameters of artificial 
viscosity in hydrodynamic simulation
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Differential Evolution with Gaussian Mutation 
(DE-GM) is a genetic optimization algorithm that 
optimizes non-convex loss landscapes. The evolution 
starts with a random distribution over the search 
space, mutates the population following a 
multivariate Gaussian distribution, and selects the 
better population as a result of crossover and loss 
evaluation. This method is not the same as CMA-DE 
or DES because we never perform a difference of 
vectors. A difference of vectors may cause expensive 
simulation samples to be flung far away from the 
rest of the population.

Initialization

Mutation

Covariance

Crossover

Selection

Bounds

Convergence

M: Mutant vectors from 
multivariate Gaussian
P: Current population
T: Trial

Next population

Each parameter’s search space is bounded

Average loss diminishing below tolerance

Test on Ackley function with many local minima 
and one global minimum

The population became less scattered with more 
iterations, and the search converged to the global 
minimum. Multivariate Gaussian distribution 
accelerates the exploitation of the loss landscape by 
constraining mutation vectors from being flung far 
away from the rest of the population. 

FNO surrogate

Simulation NN-surrogate, trained by samples 
selected by DE-GM, can accelerate the sampling of 
the loss landscape. The surrogates don’t have to be 
highly accurate pointwise but enough to tell the 
gradient descent direction. FNO naturally 
approximates global continuous functions as 
solutions to differential equations and is 
computationally efficient in the Fourier domain.

FFT

Trainable parameters

Low-pass
Non-linear activation

Control 
parameters DE-GM

FNO 
surrogate

Simulation

Optimal 
parameters

Continue searching

Converged

DE-NN Search and Optimization Workflow

This study proposes and evaluates a workflow 
integrating multivariate Gaussian-based differential 
evolution and neural network surrogates to 
accelerate the search for optimal control parameters 
for computationally intensive simulations.

The covariance matrix-based differential evolution 
through a multivariate Gaussian distribution 
effectively optimizes six key control parameters in a 
hypersonic simulation with fairly quick convergence 
and turnaround.

The NN-based surrogate training on hydrodynamic 
simulation is promising because the output captures 
the characteristic numerical oscillation with limited 
training data. It could be used to tell the direction of 
gradient descent and accelerate sampling of the 
search space.

The approach can be extended to other kinds of 
simulations. Users can also construct multi-
objectives in the optimization search.

Fig. 3. Hypersonic 
simulation by 
MARBL(eul)
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Fig. 5. FNO surrogate gets trained and predicts the 
next simulation result from sparse training data
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Fig. 4. Zoomed-in convergence of specific control parameters to optimize 
stability (the loss is a metric of numerical stability such as time step size)
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Fig. 2. Evolution of population (samples) through iterations. New samples 
suggested from the Gaussian distribution participate in cross-over and 

selection to form new population.

Fig. 1. Convergence of sampling guided by multi-variate Gaussian 
distribution. Note: 'i' means iteration; the left figure in each cell is the 
heat map, the right figure is the population Gaussian.
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