

Approximating Family of Steep Traveling Wave Solutions to Fisher's Equation with PINNs

Franz M. Rohrhofer, Stefan Posch, Clemens Gößnitzer, Bernhard C. Geiger

Introduction

Fisher's Equation & Traveling Waves

Fisher's equation, a simple yet profound **reaction-diffusion system**, was introduced by (Fisher, 1937) and reads

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = \rho u (1 - u), \tag{1}$$

where u is the concentration of a chemical substance, and the reaction term $R(u; \rho) \equiv \rho u(1-u)$ is parameterized by the reaction rate coefficient ρ . This equation admits traveling wave solutions of the form $u(x,t) = u(x \pm ct) \equiv u(z)$ for every wave speed $c \ge 2\sqrt{\rho}$. For $\rho \gg 1$, the solution exhibits a sharp and fast traveling wave front which demands fine spatial and temporal resolutions when studied numerically.

Our Work

Adapts Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) to solve Fisher's equation with solutions characterized by steep traveling wave fronts.

- Introduces a **residual weighting scheme** that is based on the underlying reaction dynamics and helps in tracking the propagating wave fronts.
- Explores a **specialized network architecture** tailored for solutions in the form of traveling waves.
- Evaluates the capacity of PINNs to approximate **family of solutions** to Fisher's equation.

Methodology

- Approximates solutions to Fisher's equation in space- and timecontinuous manner
- Minimizes loss functions during model training

$$\mathcal{L}(\theta) = \frac{1}{N_u} \sum_{i=1}^{N_u} \left| u^{(i)} - u^{(i)}_{\theta} \right|^2 + \frac{1}{N_f} \sum_{j=1}^{N_f} \left| \omega^{(j)} f^{(j)}_{\theta} \right|^2$$
(2)

Physics Loss

Data Loss Encodes Fisher's equation through

$$f_{\theta}(x,t;\rho) = \frac{\partial u_{\theta}}{\partial t} - \frac{\partial^2 u_{\theta}}{\partial x^2} - \rho u_{\theta}(1-u_{\theta})$$
(3)

Tested Models

Table 1: The four models employed in the study. These can be distinguished based on whether the physics loss function and/or the wave layer architecture are applied.

Results

ble 2: The mean (and solution of the different values for ρ .	standa All nu	rd deviations) of umbers should be	the L_2 -error for multiplied by 10 ⁻	the four tested m $^{-4}$. Bold : Best re
		Reaction rate coefficient, ρ		
Model	λ	100	1.000	10.000
standard-ANN	_	1.66(1.30)	0.79(0.29)	1.69(2.10)
wave-ANN	-	1.12(0.60)	1.05(0.81)	1.54(1.62)
standard-PINN	0	180(46)	320(184)	5689(3469)
	0.1	37.9(11.0)	$81.1 \ (15.9)$	36.8(34.3)
	1	5.74(0.95)	14.0(3.0)	132~(66)
	10	1.72(1.23)	8.79(1.46)	$354\ (174)$
wave-PINN	0	16.5(13.5)	178(160)	5082 (4106)
	0.1	1.26(1.49)	1.65(0.95)	12.1(6.5)
	1	0.82(0.95)	0.60(0.63)	1.10(0.80)
	10	2.16 (3.28)	0.83(1.45)	3.11(3.71)

Residual Weighting and *Wave Layer* show outstanding improvements compared to conventional PINNs (*standard*-PINN, $\lambda = 0$)

References

- Fisher, 1937, The wave of advance of advantageous genes, Annals of eugenics 7 (4) (1937) 355–369.
- Raissi et al., 2019, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational physics 378 (2019) 686-707.

Residual Weighting helps in tracking steep wave fronts

Wave Layer yields highly effective inductive bias

PINNs are capable of approximating family of solutions