Neural Langevin-type Stochastic Differential Equations for Astronomical time series Classification under Irregular Observations

YongKyung Oh, Seungsu Kam, Dongyoung Lim, & Sungil Kim⁺ | UNIST, Republic of Korea | {yongkyungoh, lewki83, dlim, sungil.kim}@unist.ac.kr

Research Overview

- Addressing the classification challenges of irregular time series data in astronomical studies, this study leverages <u>Neural Stochastic Differential Equations (Neural SDEs)</u> to tackle data irregularity and incompleteness.
- We conduct a comprehensive analysis of the Neural Langevin-type SDEs' optimal initial conditions, which play a pivotal role in modeling the continuous latent state.
- Three different strategies for selecting the initial condition are

Experimental Results

LSST dataset refers to data from the Photometric Large Synoptic Survey Telescope (LSST) Astronomical Time Series Classification Challenge (PLAsTiCC).

- \checkmark Regular setting vs. Irregular setting (Missing rate 50%).
- \checkmark 4925 samples, 6 input dimensions, 36 sequences, and 14 classes.

Figure 2. Comparing stability of loss with irregular setting using the selected methods

compared under regular and irregular scenarios.

Proposed method

Neural Stochastic Differential Equations (Neural SDEs)

$$\mathbf{z}(t) = \mathbf{z}(0) + \int_0^t f(s, \mathbf{z}(s); \theta_f) ds + \int_0^t g(s, \mathbf{z}(s); \theta_g) dW(s)$$

where $\mathbf{z}(0) = h(\mathbf{x}; \theta_h)$, and $\{W(t)\}_{t \ge 0}$ signifies a Brownian motion for the randomness in the process.

- $f(\cdot, \cdot; \theta_f)$ guides the systematic, predictable part of the motion.
- $g(\cdot, ; \theta_g)$ accounts for the random fluctuations in the system.

Neural Langevin-type SDEs (Neural LSDEs)

 $d\mathbf{z}(t) = \gamma \left(\overline{\mathbf{z}}(t); \theta_f \right) dt + \sigma(s; \theta_\sigma) dW(t)$

where $z(0) = h(x; \theta_h)$, and the initial condition plays important role in evolving latent state.

 $\overline{\mathbf{z}}(t) = \zeta(t, \mathbf{z}(t), \mathbf{X}(t); \theta_{\zeta})$

where X(t) is the controlled path.

Initial condition selection

Because of the irregularity and missing data, we consider three

Figure 3. Receiver operating characteristic curves for each class, under the irregular scenario

Table 1.	Classification	performance	on regular	and irregular	setting

Mathada	Regular			Irregular			
Methods	Accuracy	F1 score	AUROC	Accuracy	F1 score	AUROC	
RNN	0.428 ± 0.054	0.218 ± 0.082	0.882 ± 0.032	0.344 ± 0.028	0.101 ± 0.031	0.819 ± 0.030	
LSTM	0.524 ± 0.057	0.360 ± 0.057	0.919 ± 0.017	0.476 ± 0.024	0.316 ± 0.048	0.902 ± 0.010	
BiLSTM	0.506 ± 0.032	0.327 ± 0.055	0.914 ± 0.008	0.445 ± 0.029	0.243 ± 0.036	0.890 ± 0.008	
PLSTM	0.457 ± 0.030	0.273 ± 0.037	0.898 ± 0.006	0.426 ± 0.027	0.264 ± 0.047	0.876 ± 0.008	
TLSTM	0.368 ± 0.077	0.139 ± 0.127	0.811 ± 0.052	0.332 ± 0.024	0.098 ± 0.056	0.809 ± 0.016	
TGLSTM	0.491 ± 0.017	0.337 ± 0.013	0.912 ± 0.002	0.453 ± 0.023	0.261 ± 0.044	0.894 ± 0.010	
GRU	0.604 ± 0.033	0.448 ± 0.039	0.947 ± 0.006	0.509 ± 0.046	0.355 ± 0.041	0.913 ± 0.016	
GRU-Simple	0.354 ± 0.007	0.157 ± 0.026	0.824 ± 0.004	0.329 ± 0.005	0.086 ± 0.025	0.809 ± 0.007	
$\operatorname{GRU-}\Delta t$	0.540 ± 0.022	0.305 ± 0.026	0.927 ± 0.006	0.520 ± 0.023	0.300 ± 0.019	0.921 ± 0.004	
GRU-D	0.551 ± 0.018	0.331 ± 0.039	0.929 ± 0.003	0.522 ± 0.022	0.327 ± 0.021	0.922 ± 0.004	
Neural ODE	0.398 ± 0.014	0.153 ± 0.011	0.853 ± 0.004	0.394 ± 0.016	0.153 ± 0.017	0.850 ± 0.002	
GRU-ODE	0.436 ± 0.054	0.230 ± 0.059	0.887 ± 0.018	0.434 ± 0.029	0.232 ± 0.053	0.887 ± 0.014	
ODE-RNN	0.576 ± 0.021	0.381 ± 0.043	0.940 ± 0.005	0.542 ± 0.015	0.364 ± 0.023	0.929 ± 0.003	
ODE-LSTM	0.412 ± 0.065	0.235 ± 0.107	0.850 ± 0.071	0.373 ± 0.059	0.164 ± 0.072	0.822 ± 0.053	
Neural CDE	0.381 ± 0.009	0.161 ± 0.022	0.849 ± 0.003	0.372 ± 0.007	0.141 ± 0.022	0.845 ± 0.004	
Neural RDE	0.317 ± 0.002	0.041 ± 0.011	0.796 ± 0.006	0.316 ± 0.001	0.037 ± 0.006	0.794 ± 0.003	
Neural SDE	0.396 ± 0.016	0.210 ± 0.037	0.862 ± 0.005	0.390 ± 0.009	0.175 ± 0.010	0.856 ± 0.004	
Neural LSDE (1)	0.402 ± 0.019	0.186 ± 0.019	0.866 ± 0.008	0.398 ± 0.031	0.183 ± 0.030	0.860 ± 0.009	
Neural LSDE (2)	0.691 ± 0.012	0.556 ± 0.027	0.963 ± 0.002	0.638 ± 0.009	0.511 ± 0.018	0.953 ± 0.002	
Neural LSDE (3)	$\overline{0.695 \pm 0.009}$	$\overline{0.573 \pm 0.041}$	0.966 ± 0.001	$\overline{\textbf{0.648}\pm\textbf{0.020}}$	$\overline{0.522\pm0.027}$	0.956 ± 0.002	

- different approaches to handle the initial condition using *x*:
- (1) Interpolation method: Apply natural cubic interpolation.
- (2) Imputation method: Fill mean value for missing values.
- (3) Static approach: Replace value of with zero.

We obtain z_0 from x to determine the initial state z(0) at t = 0.

Figure 1. Example of regular and irregular (50% dropped) observation with the proposed three approaches

Table 2. Ablation study of the model components in the proposed method

Methods			Regular			Irregular			
$\boldsymbol{z}(0)$	ζ	σ	Accuracy	F1 score	AUROC		Accuracy	F1 score	AUROC
(1)	X O	L N L N	0.403 ± 0.006 0.390 ± 0.015 0.412 ± 0.017 0.402 ± 0.019	$0.152 \pm 0.018 \\ 0.172 \pm 0.013 \\ 0.193 \pm 0.027 \\ 0.186 \pm 0.019$	$\begin{array}{c} 0.861 \pm 0.003 \\ 0.859 \pm 0.003 \\ 0.868 \pm 0.007 \\ 0.866 \pm 0.008 \end{array}$		$\begin{array}{c} 0.396 \pm 0.004 \\ 0.391 \pm 0.010 \\ 0.401 \pm 0.019 \\ 0.398 \pm 0.031 \end{array}$	$\begin{array}{c} 0.152 \pm 0.008 \\ 0.166 \pm 0.008 \\ 0.172 \pm 0.020 \\ 0.183 \pm 0.030 \end{array}$	$\begin{array}{c} 0.855 \pm 0.006 \\ 0.852 \pm 0.004 \\ 0.864 \pm 0.006 \\ 0.860 \pm 0.009 \end{array}$
(2)	X O	L N L N	$\begin{array}{c} 0.414 \pm 0.015 \\ 0.428 \pm 0.019 \\ 0.666 \pm 0.015 \\ 0.691 \pm 0.012 \end{array}$	$\begin{array}{c} 0.212 \pm 0.021 \\ 0.237 \pm 0.052 \\ 0.534 \pm 0.040 \\ 0.556 \pm 0.027 \end{array}$	$\begin{array}{c} 0.866 \pm 0.006 \\ 0.869 \pm 0.007 \\ 0.961 \pm 0.002 \\ 0.963 \pm 0.002 \end{array}$		$\begin{array}{c} 0.349 \pm 0.005 \\ 0.353 \pm 0.018 \\ 0.638 \pm 0.015 \\ 0.638 \pm 0.009 \end{array}$	$\begin{array}{c} 0.128 \pm 0.032 \\ 0.136 \pm 0.039 \\ 0.509 \pm 0.030 \\ 0.511 \pm 0.018 \end{array}$	$\begin{array}{c} 0.822 \pm 0.006 \\ 0.819 \pm 0.014 \\ 0.954 \pm 0.001 \\ 0.953 \pm 0.002 \end{array}$
(3)	X O	L N L N	$\begin{array}{c} 0.315 \pm 0.000 \\ 0.315 \pm 0.000 \\ 0.685 \pm 0.006 \\ 0.695 \pm 0.009 \end{array}$	$\begin{array}{c} 0.034 \pm 0.000 \\ 0.034 \pm 0.000 \\ 0.564 \pm 0.018 \\ 0.573 \pm 0.041 \end{array}$	$\begin{array}{c} 0.791 \pm 0.003 \\ 0.789 \pm 0.002 \\ 0.964 \pm 0.002 \\ 0.966 \pm 0.001 \end{array}$		$\begin{array}{c} 0.315 \pm 0.000 \\ 0.315 \pm 0.000 \\ 0.640 \pm 0.012 \\ 0.648 \pm 0.020 \end{array}$	$\begin{array}{c} 0.034 \pm 0.000 \\ 0.034 \pm 0.000 \\ 0.524 \pm 0.011 \\ 0.522 \pm 0.027 \end{array}$	$\begin{array}{c} 0.790 \pm 0.002 \\ 0.790 \pm 0.001 \\ 0.954 \pm 0.002 \\ 0.956 \pm 0.002 \end{array}$

Reference

✓ Oh, Y., Lim, D., & Kim, S. (2024), Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data, The Twelfth International Conference on Learning Representations (ICLR) 2024, May 2024. (Spotlight)

Acknowledgement

This work was partly supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (Grant number: HI19C1095), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00253002), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00218913), and the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2020-0-01336, Artificial Intelligence Graduate School Program (UNIST)).

