Neural Langevin-type Stochastic Differential Equations for Astronomical time series Classification under Irregular Observations

- Addressing the classification challenges of irregular time series data in astronomical studies, this study leverages Neural Stochastic Differential Equations (Neural SDEs) to tackle data irregularity and incompleteness.
- We conduct a comprehensive analysis of the Neural Langevin-type SDEs' optimal initial conditions, which play a pivotal role in modeling the continuous latent state.
- Three different strategies for selecting the initial condition are

YongKyung Oh, Seungsu Kam, Dongyoung Lim, & Sungil Kim† | UNIST, Republic of Korea | {yongkyungoh, lewki83, dlim, sungil.kim}@unist.ac.kr

Research Overview

where $\mathbf{z}(0) = h(x; \theta_h)$, and $\{W(t)\}(t \ge 0)$ signifies a Brownian motion for the randomness in the process.

- $f(\cdot,\cdot;\theta_f)$ guides the systematic, predictable part of the motion.
- $g(\cdot,\cdot;\theta_g)$ accounts for the random fluctuations in the system.

where $\mathbf{z}(0) = h(x; \theta_h)$, and the initial condition plays important role in evolving latent state.

 $\overline{\mathbf{z}}(t) = \zeta(t, \mathbf{z}(t), \mathbf{X}(t); \theta_{\zeta})$

where $X(t)$ is the controlled path.

compared under regular and irregular scenarios.

Proposed method

Neural Stochastic Differential Equations (Neural SDEs)

- different approaches to handle the initial condition using x :
- (1) Interpolation method: Apply natural cubic interpolation.
- (2) Imputation method: Fill mean value for missing values.
- (3) Static approach: Replace value of with zero.

We obtain z_0 from x to determine the initial state $z(0)$ at $t = 0$.

$$
\mathbf{z}(t) = \mathbf{z}(0) + \int_0^t f(s, \mathbf{z}(s); \theta_f) \mathrm{ds} + \int_0^t g(s, \mathbf{z}(s); \theta_g) \mathrm{d}W(s)
$$

Neural Langevin-type SDEs (Neural LSDEs)

 $dz(t) = \gamma(\overline{z}(t); \theta_f)dt + \sigma(s; \theta_\sigma)dW(t)$

Initial condition selection

Because of the irregularity and missing data, we consider three

Figure 1. Example of regular and irregular (50% dropped) observation with the proposed three approaches

Figure 2. Comparing stability of loss with irregular setting using the selected methods

Figure 3. Receiver operating characteristic curves for each class, under the irregular scenario

Table 1. Classification performance on regular and irregular setting

Experimental Results

LSST dataset refers to data from the Photometric Large Synoptic Survey Telescope (LSST) Astronomical Time Series Classification Challenge (PLAsTiCC).

- \checkmark Regular setting vs. Irregular setting (Missing rate 50%).
- \checkmark 4925 samples, 6 input dimensions, 36 sequences, and 14 classes.

Reference

✓ Oh, Y., Lim, D., & Kim, S. (2024), Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data, The Twelfth International Conference on Learning Representations (ICLR) 2024, May 2024. (Spotlight)

Acknowledgement

This work was partly supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (Grant number: HI19C1095), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00253002), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00218913), and the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2020-0-01336, Artificial Intelligence Graduate School Program (UNIST)).

