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Research Overview

• Addressing the classification challenges of irregular time 

series data in astronomical studies, this study leverages 

Neural Stochastic Differential Equations (Neural SDEs) to 

tackle data irregularity and incompleteness.

• We conduct a comprehensive analysis of the Neural 

Langevin-type SDEs' optimal initial conditions, which play a 

pivotal role in modeling the continuous latent state. 

• Three different strategies for selecting the initial condition are 

compared under regular and irregular scenarios. 

Proposed method

Neural Stochastic Differential Equations (Neural SDEs) 
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where 𝒛 0 = ℎ(𝒙; 𝜃ℎ), and {𝑊(𝑡)}_(𝑡≥0)  signifies a Brownian 

motion for the randomness in the process.

• 𝑓(⋅,⋅; 𝜃𝑓) guides the systematic, predictable part of the motion. 

• 𝑔(⋅,⋅; 𝜃𝑔) accounts for the random fluctuations in the system.

Neural Langevin-type SDEs (Neural LSDEs)

d𝒛 𝑡 = 𝛾 𝒛 𝑡 ; 𝜃𝑓 d𝑡 + 𝜎 𝑠; 𝜃𝜎 d𝑊(𝑡)

where 𝒛 0 = ℎ(𝒙; 𝜃ℎ), and the initial condition plays important 

role in evolving latent state.

𝒛 𝑡 = 𝜁 𝑡, 𝒛 𝑡 , 𝑿 𝑡 ; 𝜃𝜁  

where 𝑿 𝑡  is the controlled path. 

Initial condition selection

Because of the irregularity and missing data, we consider three 

different approaches to handle the initial condition using 𝒙:

  (1) Interpolation method: Apply natural cubic interpolation.

  (2) Imputation method: Fill mean value for missing values.

  (3) Static approach: Replace value of with zero.

We obtain 𝒛0 from 𝒙 to determine the initial state 𝒛 0  at 𝑡 = 0.
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Figure 1. Example of regular and irregular (50% dropped) observation

with the proposed three approaches
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Figure 2. Comparing stability of loss with irregular setting using the selected methods

Figure 3. Receiver operating characteristic curves for each class, 

under the irregular scenario

Table 1. Classification performance on regular and irregular setting

Table 2. Ablation study of the model components in the proposed method

Experimental Results

LSST dataset refers to data from the Photometric Large 

Synoptic Survey Telescope (LSST) Astronomical Time Series 

Classification Challenge (PLAsTiCC). 

✓ Regular setting vs. Irregular setting (Missing rate 50%).

✓ 4925 samples, 6 input dimensions, 36 sequences, and 14  classes.
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