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GA-ReLU: an activation function for Geometric Algebra 
Networks applied to 2D Navier-Stokes PDEs

•Networks in Geometric Algebra (GA) are very effective 
at capturing the geometry of data. 

•Data are embedded as multivectors of a given algebra.


•Inputs, weights and biases to the network are all 
multivectors. 

•Q: how to apply activation functions to multivectors?

Introduction

Fig.1: elements in 2D GA.

•It is hard to define a function theory for multivectors.

•Generally, a real-valued activation function φ is applied over each real coefficient of 
the multivector bases independently.

Problem

• This approach does not take into account interactions between elements, and y 
does not have the same geometrical meaning of x.


• We propose GA-ReLU to keep the activation function grounded in geometry.


Fig.2: element-wise activation function over multivector x.

• We look at the 2D Navier-Stokes problem over a square domain.

• We embed smoke (scalar) and velocity (vector) as multivectors in G(2,0,0). 
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Methodology

Fig.3: embedding PDE variables as multivectors.

Results

Fig.4: element-wise ReLU, complex ReLU, GA-ReLU.

f(z) =
1
2 (1 + cos(arg(z))) z = K(arg(z))z

x = (x0 + Ix12) + e1(x1 + Ix2) = zS + e1zV

• The complex ReLU is defined as: 

• We rewrite our multi vector in 2D as a sum of two complex numbers:

bounded

no exchange of information 

between elements 
phase dependency


unbounded vector part

phase dependency


bounded


Fig.5: Errors versus number of training data for Clifford ResNet 
and Clifford FNO with ReLU and GA-ReLU activation functions.

ReLU

GA-ReLU

(ours)

ReLU

GA-ReLU

(ours)

Fig. 6: Difference between ground truth and predicted scalar fields for 5 different time instants.

Fig. 7: Difference between ground truth and predicted vector fields for 5 different time instants.

• GA-ReLU 𝛙 is the composition of φ, element-wise ReLU, and f, complex ReLU.


•φ keeps the magnitude bounded;

• f introduces a dependency on the vector phase.

Contributions
• Design of a geometry-informed activation function for G(2,0,0)

• More accurate PDE solutions with minimal intervention on the activation function.

ap2219@cam.ac.uk


