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Introduction
Stochastic Differential Equation (SDE) is a fundamental
modeling tool in various science and engineering fields.
Compared with traditional deterministic models which
often fall short in capturing the stochasticity in the nature,
the significance of SDE lies in the ability to model complex
systems influenced by random perturbations.
SDE models are widely used in (but not limited to):
1 Quantum Mechanics in Physics
2 Molecular Dynamics in Chemistry
3 Material Sciences

The calibration of these models is crucial for their effective
application.
We present a noise guided trajectory based system
identification method for inferring the dynamical structure
from observation generated by SDEs.

Learning Framework
We consider the following SDE

dXt = f (Xt)dt + dWt, Xt,Wt ∈ Rd, (1)
where f : Rd → Rd is a drift term, and W represents the
Brownian noise with a symmetric positive definite
covariance matrix D = D(x) : Rd → Rd×d.
We consider the scenario when we are given continuous
observation data in the form of {Xt, dXt}t∈[0,T ] for X0 ∼ µ0.
The estimation of drift funtion f will be the minimizer to the
following loss function

EH(f̃ ) = EX0∈µ0

[ 1
2T

∫ T

t=0
< f̃ (Xt),D−1(Xt)f̃ (Xt) > dt

- 2
∫ T

t=0 < f̃ (Xt),D−1(Xt)dXt >
]
,

where f̃ ∈ H; the function space H is designed to be
convex and compact and it is also data-driven.
In the case of uncorrelated noise, i.e. D(X) = σ2(X)I,
where I is the d × d identity matrix and σ : Rd → R+ is a
scalar function depends on the state, representing the
noise level. The above equation can be simplified to

ESim
H (f̃ ) = EX0∈µ0

[ 1
2T

∫ T

t=0

||f̃ (Xt)||2

σ2(Xt)
dt − 2

∫ T

t=0

< f̃ (Xt), dXt >

σ2(Xt)

]
.

The uniqueness of our method is that we incorporate the
covariance matrix into the learning and hence improving
the estimation especially when the noise is correlated.

Performance Measures
If we have access to original drift function f , then we will
use the following error to compute the difference between
f̂ (our estimator) to f with the following norm

||f − f̂ ||2L2(ρ) =
1
T

∫
X∈Ω

||f (X)− f̂ (X)||2ℓ2(Rd) dρ(X).

Here the weighted measure ρ is defined on Ω, where it
defines the region of X explored due to the dynamics
defined by (1).
In real life situation, f is most likely non-accessible. Hence
we will look at a performance measure that compare the
difference between X(f ,X0,T) = {Xt}t∈[0,T ] and
X̂(f̂ ,X0,T) = {X̂t}t∈[0,T ]. Then, the difference between the
two trajectories is measured as follows

||X − X̂|| = EX0∼µ0

[1
T

∫ T

t=0
||Xt − X̂t||2ℓ2(Rd) dt

]
.

We also compare the distribution of the trajectories over
different initial conditions and all possible noise at some
chosen time snapshots using the Wasserstein distance.

Examples I
We initiate our numerical study with a one-dimensional
(d = 1) drift function that incorporates both polynomial and
trigonometric components, given by
f = 2 + 0.08X − 0.05 sin(X) + 0.02 cos2(X).

Figure: Estimation Summary of 1D Example

Left: Comparison of f and f̂ . Middle: 5 trajectories
generated by f . Right: 5 trajectories generated by f̂ with
same noise.

Table: One-dimensional Drift Function Estimation Summary

Number of Basis 8
Maximum Degree 2

Relative L2(ρ) Error 0.007935
Relative Trajectory Error 0.0020239 ± 0.002046

Wasserstein Distance (t=1.00) 0.0403

Examples II
We extend our numerical test to two-dimensional case
(d = 2) and set

f1 = 2 sin(0.2X1) + 1.5 cos(0.1X2)

f2 = 3 sin(0.3X1) cos(0.1X2).

Figure: Two-dimensional Trigonometric Trajectory Comparison

Figure: Comparison of f and f̂ in 2D. (a) Surface of Dimension 1 (b)
Surface of Dimension 2

Summary
We have presented a novel approach of learning the drift
and diffusion from a noise-guide likelihood function. Such
learning can handle general noise structure as long as the
covariance information of the noise is known.
Our experiment results confirms that our method is
capable in functional estimation of the drift term for SDE.
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