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TL;DR

JAX-SPH is a Smoothed Particle Hydrodynamics (SPH) framework implemented in

JAX. JAX-SPH extends the code for dataset generation from the LagrangeBench

project [Toshev et al., 2024] by: (a) integrating further key SPH algorithms, (b) restruc-

turing the code toward a Python package, (c) validating solver gradients numerically,

and (d) showcasing machine learning applications of the differentiable solver.

SPH Solver

We introduce the first JAX-based weakly compressible SPH solver for simulating incom-

pressible fluids. The governing equations of such systems are the mass and momentum

conservation equations

d

dt
(ρ) = −ρ(∇ · u),

d

dt
(u) = −1

ρ
∇p + 1

Re
∇2u + fext,

where ρ denotes the density, u the velocity, p the pressure, Re the Reynolds number,

and f the external force. Our SPH framework includes the following components:

Standard SPH - weakly compressible SPH solver, see [Adami et al., 2012]

Transport velocity formulation SPH - improved shifting scheme, see

[Adami et al., 2013]

Riemann SPH - low-dissipation SPH solver solving 1D Riemann problems between

the particles, see [Zhang et al., 2017]

Wall boundary condition (BC) - free-slip and no-slip boundary conditions, see

[Adami et al., 2012]

Thermal diffusion - diffusive temperature field with Dirichlet BC

2D Taylor Green Vortex

2D Taylor Green vortex velocity magnitudes at the start of the simulation (left) and at t = 5 (right),
calculated using transport velocity formulation SPH.

2D Lid-Driven Cavity

Lid-driven cavity with dx = 0.01 showing absolute particle velocities of the Riemann solver (left) and

velocity profiles of each SPH method at the midsection for U and V (right)

Thermal Diffusion Example
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Simulation of channel flow with hot bottom wall using standard SPH and thermal diffusion. The plots

show the non-dimensional temperature at different time steps.

Gradient Validation

Solver gradients of kinetic energy over position changes dEkin

dr , comparing JAX Autograd

to finite differences on Taylor-Green vortex and lid-driven cavity.

Taylor-Green Vortex Lid Driven Cavity

Machine Learning Applications

Inverse Problem

A 2D water cube inside a box undergoes acceleration due to gravity.

The task is to find the initial position of the cube given its final state.

MSE between the target final state and the simulated final state with random initial

particles is used as loss to optimize the positions.

Solver-in-the-Loop

We adapt the popular ”Solver-in-the-Loop” (SitL)

[Um et al., 2021] training scheme to particles.

SitL interleaves a traditional solver a coarse

spatial and/or temporal discretization with a

learnable correction function.

Metric Solver only Learned only SitL

MSE5 1.7e − 7 6.7e − 9 3.3e − 9
MSE20 7.9e − 6 1.9e − 7 1.3e − 7
MSEEkin

0.13 2.8e − 4 7.4e − 5
Sinkhorn 3.4e − 7 3.7e − 8 9.3e − 9

The solver needs to be differentiable, as gradients are computed through it for

multiple rollout steps in training.

Learned only (single step) SitL (3 steps)
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