

JAX-SPH

A Differentiable Smoothed Particle Hydrodynamics Framework

AP Toshev¹, H Ramachandran^{*,1}, JA Erbesdobler^{*,1}, G Galletti ^{*,2} J Brandstetter^{3,4}, NA Adams^{1,5} ¹ Technical University of Munich, ² Independent, ³ JKU Linz, ⁴ NXAI GmbH, ⁵ MEP

TL;DR

JAX-SPH is a Smoothed Particle Hydrodynamics (SPH) framework implemented in JAX. JAX-SPH extends the code for dataset generation from the LagrangeBench project [Toshev et al., 2024] by: (a) integrating **further key SPH algorithms**, (b) restructuring the code toward a **Python package**, (c) validating solver gradients numerically, and (d) showcasing **machine learning applications of the differentiable solver**.

SPH Solver

We introduce the first JAX-based weakly compressible SPH solver for simulating incompressible fluids. The governing equations of such systems are the mass and momentum conservation equations

$$\begin{split} &\frac{d}{dt}(\rho) = -\rho(\nabla\cdot\mathbf{u}),\\ &\frac{d}{dt}(\mathbf{u}) = -\frac{1}{\rho}\nabla p + \frac{1}{Re}\nabla^2\mathbf{u} + f_{ext}, \end{split}$$

where ρ denotes the density, **u** the velocity, *p* the pressure, Re the Reynolds number, and **f** the external force. Our SPH framework includes the following components:

- Standard SPH weakly compressible SPH solver, see [Adami et al., 2012]
- Transport velocity formulation SPH improved shifting scheme, see

Gradient Validation

Solver gradients of kinetic energy over position changes $\frac{dE_{kin}}{dr}$, comparing JAX Autograd to finite differences on Taylor-Green vortex and lid-driven cavity.

Machine Learning Applications

Inverse Problem

- A 2D water cube inside a box undergoes acceleration due to gravity.
- The task is to find the initial position of the cube given its final state.
- MSE between the target final state and the simulated final state with random initial particles is used as loss to optimize the positions.

optimizer 15 steps	
Loss: 0.30 - Loss: 0.01	Loss: 0.32 optimizer 15 steps
	Loss: 0.02
SPH solver	
100 steps	SPH solver 100 steps
• • • • • • • • • • • • • • • • • • • •	

- [Adami et al., 2013]
- Riemann SPH low-dissipation SPH solver solving 1D Riemann problems between the particles, see [Zhang et al., 2017]
- Wall boundary condition (BC) *free-slip* and *no-slip* boundary conditions, see [Adami et al., 2012]
- Thermal diffusion diffusive temperature field with Dirichlet BC

2D Taylor Green Vortex

2D Taylor Green vortex velocity magnitudes at the start of the simulation (left) and at t = 5 (right), calculated using transport velocity formulation SPH.

2D Lid-Driven Cavity

Solver-in-the-Loop

- We adapt the popular "Solver-in-the-Loop" (SitL) [Um et al., 2021] training scheme to particles.
- SitL interleaves a traditional solver a coarse spatial and/or temporal discretization with a learnable correction function.

Metric	Solver only	Learned only	SitL
MSE_5	1.7e - 7	6.7e - 9	3.3e-9
MSE_{20}	7.9e - 6	1.9e - 7	1.3e-7
$MSE_{E_{kin}}$	0.13	2.8e - 4	7.4e - 5
Sinkhorn	3.4e - 7	3.7e - 8	9.3e - 9

• The solver needs to be differentiable, as gradients are computed through it for multiple rollout steps in training.

Learned only (single step)

SitL (3 steps)

References

[Adami et al., 2012] Adami, S., Hu, X., and Adams, N. A. (2012). A generalized wall boundary condition for smoothed particle hydrodynamics. *Journal of Computational Physics*, 231(21):7057–7075.

[Adami et al., 2013] Adami, S., Hu, X., and Adams, N. A. (2013). A transport-velocity formulation for smoothed particle hydrodynamics. *Journal of Computational Physics*, 241:292–307.

[Toshev et al., 2024] Toshev, A., Galletti, G., Fritz, F., Adami, S., and Adams, N. (2024). Lagrangebench: A lagrangian fluid

Lid-driven cavity with dx = 0.01 showing absolute particle velocities of the Riemann solver (left) and velocity profiles of each SPH method at the midsection for U and V (right)

Thermal Diffusion Example

Simulation of channel flow with hot bottom wall using standard SPH and thermal diffusion. The plots show the non-dimensional temperature at different time steps.

mechanics benchmarking suite. Advances in Neural Information Processing Systems, 36.

[Um et al., 2021] Um, K., Brand, R., Yun, Fei, Holl, P., and Thuerey, N. (2021). Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers.

[Zhang et al., 2017] Zhang, C., Hu, X., and Adams, N. A. (2017). A weakly compressible sph method based on a low-dissipation riemann solver. *Journal of Computational Physics*, 335:605–620.

🕅 @ArturToshev