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Introduction

Multi-Touch Attribution (MTA) plays a crucial role in both marketing and adver-
tising, offering insight into the complex series of interactions within customer
journeys during transactions or impressions. This holistic approach empowers
marketers to strategically allocate attribution credits for conversions across di-
verse channels, not only optimizing campaigns but also elevating overall mar-
ketplace strategies. Traditional methods like first-touch and last-touch over-
simplify the problem, while existing MTA models have various drawbacks in
capturing nuanced interactions and handling non-uniform time intervals. Ac-
knowledging the irregular time series nature of customer journey data (cus-
tomer journey figure given below), to address these limitations, the paper intro-
duces a novel approach using ODE-LSTM (Ordinary Differential Equation) [5]
networks with an attention mechanism. This approach can handle irregu-
lar time gaps in customer journey data and is shown to outperform other
MTA methods, particularly when time intervals are not excessively irregular.
While its performance declines with increasing irregularity, the ODE-LSTM ap-
proach excels in estimating attributions compared to alternative approaches.

Model

Let X = (X1,X2, . . . ,XN ) denote the input sequence data, where each Xi =
(x1,x2, . . . ,xL) represents a sequence with length L and xl denotes the features
at the lth location. Let Y = (y1, y2, . . . , yN ) be the class of the sequential data.
Follow [1] and [5], we use autoregressive modeling with ODE-LSTM with an ad-
ditional attention layer to model the customer journey seuqences.
Assume each input data xl is associated with an timestamp tl and denote hidden
states as well as memory cell as hl and ml. The ODE-LSTM algorithm follows:

h′l,ml = LSTMCell (ml−1,hl−1,xl) ,

hl = ODESolve
(
fθ,hl−1,h

′
l, (tl−1, tl)

)
,

where the function fθ specifies the dynamics of the hidden state, using a neural
network with parameters θ.
In order to obtain the attribution, the above hidden states are further feed to an
attention layer to identify pivotal touchpoints contributing to conversions. Sub-
sequently, we consolidate the representations of these significant touchpoints,
creating a comprehensive context vector.
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The hidden states hl are feed through a one-layer multilayer perceptron (MLP)
to get vl, where W is a learnable matrix. Then, we measure the importance
of the touchpoint by assessing the similarity of vl with the vector u and obtain a
normalized importance weight al through a softmax function. It is noteworthy that,
by design, al > 0. This construction offers the advantage that the contribution of
every touchpoint is always positive. Afterward, we compute the vector s as the
weighted sum of touchpoint representations based on the non-negative weights.

Essentially, s is the convex combination of all hl. u can be seen as a high-level representa-
tion of a fixed sequence. We can customize this attribution model by imposing constraints
on u based on domain knowledge about touchpoint importance, it can either be kept fixed
or initialized randomly and jointly learned during the process. In our modeling, we adopt the
latter approach.
In MTA problem, customer journeys are categorized into positive (leading to conversions)
and negative (not leading to conversions). This problem can be treated as binary clas-
sification in the transformed journey vector space s, which combines hidden outputs and
attention weights. Thus, we optimize a cross-entropy loss to train the model. Up to this
point, we have the estimated conversion probability p(y|Xi) and the attention scores a.
With these outcomes, we can inherently allocate attribution to channels at each touchpoint
l. As we want to estimate the impact of each channel on successful conversions, our cal-
culations exclusively focus on customers who have achieved successful conversions. The
total attribution of a channel is the accumulative sum of the touchpoint attention scores if
that touchpoint visit that channel.

Results

Below table demonstrates the model performance in terms of the AUC and PRAUC. On
the data (Criteo) that the time scale are relative small and most time differences are valid,
ODE-LSTM performs the best, however, as the time difference goes large and most differ-
ences are 0 as in the marketing signup data, ODE-LSTM was beat by ALSTM and TCN.
The reason might be the ODE-LSTM faces challenges due to its focus on continuous transi-
tions. ALSTM and TCN are more robust in capturing patterns in such scenarios. However,
the simple Transformer model is the worst on the both data. It might be because its lack
of inherent temporal understanding, which means it may not capture important temporal
dependencies in the data. For such irregular time intervals or missing data points data,
Transformers may not handle such irregularities well, and additional preprocessing or better
time encoding is often needed.
Additionally, we introduce a novel metric called AURE (Area Under Removal Effects). AURE
tracks the cumulative impact on conversion probabilities by successively removing channels
based on the ranked attributions. It appears that ODE-LSTM and Transformers are highly
consistent on Criteo data. The results are shown in right figures. The top 100 removal
effects for ODE-LSTM and Transformer are 0.801 and 0.800 respectively, indicating a slight
better performance of ODE-LSTM.

Models Criteo Marketing Sign-up
AUC PRAUC AUC PRAUC

ODE-LSTM 0.9832 0.9293 0.9200 0.8507
ALSTM 0.9827 0.9286 0.9710 0.9292
TCN 0.9817 0.9238 0.9629 0.9079
TRANS 0.9813 0.9226 0.9262 0.8394

Remarks

We proposed a ODE-LSTM combined with an attention mechanism to estimate
the attribution in MTA problem. ODE-LSTM is not necessary the best the model
if simply comparing the AUC and PRAUC, and ALSTM is the most robust method
for predicting conversion. However, by comparing the proposed AURE metrics,
ODE-LSTM gives the best results. Although Neural ODE handles continuous
data, e.g. irregularly-sampled data or test-time sampling shift automatically and
are mathematically tractable to analyze. They are extremely slow at both training
and inference. To further enhance the performance of ODE-related methods, a
potential avenue for improvement lies in refining the handling of time dynamics
inherent in the attribution problem. Or we could try newly developed methods,
for example NCDE [4] and State Space Model [3, 2].
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