LEAD: Least Action Dynamics for Min-Max Optimization

Amartya Mitra*

Guillaume Lajoie

Ioannis Mitliagkas

Min-Max Optimization

Optimize with respect to two players,

$$x^* \in \underset{x}{\operatorname{argmin}} f(x, y^*)$$

$$y^* \in \underset{y}{\operatorname{argmax}} g(x^*, y)$$

Examples include,

GANs

Out-of-distribution generalization

Adversarial Training

Single-objective Optimization

Minimization on a smooth, differentiable loss,

$$x^* \in \underset{x}{\operatorname{argmin}} f(x)$$

Gradient Descent,

$$v(x) := \nabla_x f(x)$$

$$x_{t+1} = x_t - \eta v(x_t)$$

Update operator,

Gets
$$x_t$$
 Returns x_{t+1} $F_{\eta}(x_t) := x_t - \eta v(x_t)$

Stable fixed point of F_{η} is a local **minimum**. $F_{\eta}(x^*) = x^*$

$$F_{\eta}(x^*) = x^*$$

Min-Max Optimization

Single-objective Optimization

Minimization on a smooth, differentiable loss,

$$x^* \in \underset{x}{\operatorname{argmin}} f(x)$$

Gradient Descent,

Vector-field
$$v(x) := \nabla_x f(x)$$

$$x_{t+1} = x_t - \eta v(x_t)$$

Update operator,

Gets
$$x_t$$
 Returns x_{t+1} $F_{\eta}(x_t) := x_t - \eta v(x_t)$

Stable fixed point of F_{η} is a local **minimum**.

$$F_{\eta}(x^*) = x^*$$

Min-Max Optimization

• Optimize f(x,y) with respect to two players,

$$x^* \in \underset{x}{\operatorname{argmin}} f(x, y^*)$$

$$y^* \in \underset{y}{\operatorname{argmax}} f(x^*, y)$$

Gradient Descent-Ascent,

$$v(x,y) := \begin{bmatrix} \nabla_x f(x,y) \\ -\nabla_y f(x,y) \end{bmatrix}$$

Update operator on gradient descent-ascent,

$$F_{\eta}(x_t, y_t) := \begin{bmatrix} x_t \\ y_t \end{bmatrix} - \eta v(x_t, y_t)$$

Stable fixed point of F_{η} is a local **Nash equilibrium**.

 F_{η} is convergent if the spectral radius of ∇F_{η} at the fixed point, is smaller than one. The largest eigenvalue

 F_{η} is convergent if the spectral radius of ∇F_{η} at the fixed point, is smaller than one.

$$\nabla F_{\eta} = I - \eta \nabla v$$

 F_{η} is convergent if the spectral radius of ∇F_{η} at the fixed point, is smaller than one.

$$\nabla F_{\eta} = I - \eta \nabla v$$

 ∇v is the Hessian

Symmetric

All real eigenvalues

Well-known dynamics

 F_{η} is convergent if the spectral radius of ∇F_{η} at the fixed point, is smaller than one.

$$\nabla F_{\eta} = I - \eta \nabla v$$

 ∇v is the Hessian

Symmetric

All real eigenvalues

Well-known dynamics

Motivation

Understand game optimization from a physical perspective.

· Model games as a physical system and manipulate the system to curb the rotational dynamics.

Physics Perspective, recipe from minimization

Common intuition in optimization:

Polyak momentum (heavy ball) is described as an object moving inside a potential well and is accelerating while moving towards the minimum.

Physics Perspective, recipe from minimization

Common intuition in optimization:

Polyak momentum (heavy ball) is described as an object moving inside a potential well and is accelerating while moving towards the minimum.

Discretize the continuous-time
$$x_{k+1} = x_k + \beta(x_k - x_{k-1}) - \eta \nabla_x f(x_k)$$
 Polyak momentum!

Physics Perspective, intuition from minimization

Introduce relevant Model min-max optimization Determine the forces in the system as a physical system with equations of motion to curb the rotations rotational dynamics Continuous time Equation Discretize the New optimization of motion using all the continuous-time algorithm! forces in the system system

$$\ddot{x} = -\nabla_x f(x, y)$$

$$\ddot{y} = \nabla_y f(x, y)$$

$$\ddot{x} = -\nabla_x f(x,y)$$
 similar force in nature
$$\ddot{y} = \nabla_y f(x,y)$$

$$m\ddot{x} = F_{vortex} = -\nabla_x f(x,y)$$

$$m\ddot{y} = F_{vortex} = \nabla_y f(x,y)$$

$$m \ \ddot{x} = F_{vortex} = -\nabla_x f(x, y)$$

$$m \ \ddot{y} = F_{vortex} = \nabla_y f(x, y)$$

$$m \ \ddot{x} = F_{vortex} = -\nabla_x f(x, y)$$

$$m \ \ddot{y} = F_{vortex} = \nabla_y f(x, y)$$

- 1. Exhibit rotational dynamics
- 2. Increases the velocity

Magnetic force is also known to produce rotations,

$$m \ \ddot{x} = F_{vortex} + F_{magnetic} = -\nabla_x f(x,y) - 2q(\nabla_{xy} f) \dot{y}$$

$$m \ \ddot{y} = F_{vortex} + F_{magnetic} = \nabla_y f(x,y) + 2q(\nabla_{xy} f) \dot{x}$$
 charge

Magnetic force is also known to produce rotations,

$$m \; \ddot{x} = F_{vortex} + F_{magnetic} = -\nabla_x f(x,y) - 2q(\nabla_{xy} f) \dot{y}$$

$$m \; \ddot{y} = F_{vortex} + F_{magnetic} = \nabla_y f(x,y) + 2q(\nabla_{xy} f) \dot{x}$$
 charge

Magnetic force is also known to produce rotations,

$$m \ \ddot{x} = F_{vortex} + F_{magnetic} = -\nabla_x f(x,y) - 2q(\nabla_{xy} f) \dot{y}$$

$$m \ \ddot{y} = F_{vortex} + F_{magnetic} = \nabla_y f(x,y) + 2q(\nabla_{xy} f) \dot{x}$$
 charge

- 1. Exhibit rotational dynamics
- 2. Increases the velocity

Step 3: Introduce relevant forces to reduce the velocity

Need to add some form of dissipation; simplest form is friction

$$m \ddot{x} = F_{vortex} + F_{magnetic} + F_{friction} = -\nabla_x f(x, y) - 2q(\nabla_{xy} f) \dot{y} - \mu \dot{x}$$

$$m \ddot{y} = F_{vortex} + F_{magnetic} + F_{friction} = \nabla_y f(x, y) + 2q(\nabla_{xy} f) \dot{x} - \mu \dot{y}$$

friction coefficient

Step 3: Introduce relevant forces to reduce the velocity

Need to add some form of dissipation; simplest form is friction

$$m \ddot{x} = F_{vortex} + F_{magnetic} + F_{friction} = -\nabla_x f(x, y) - 2q(\nabla_{xy} f) \dot{y} - \mu \dot{x}$$

$$m \ddot{y} = F_{vortex} + F_{magnetic} + F_{friction} = \nabla_y f(x, y) + 2q(\nabla_{xy} f) \dot{x} - \mu \dot{y}$$

Vortex Force:

- 1. Exhibit rotational dynamics
- 2. Increases the velocity

 ✓

The friction causes the particle to lose speed and converge!

Step 4 - Discretize the system: LEAD

$$m \ \ddot{x} = F_{vortex} + F_{magnetic} + F_{friction} = -\nabla_x f(x, y) - 2q(\nabla_{xy} f) \dot{y} - \mu \dot{x}$$

$$m \ \ddot{y} = F_{vortex} + F_{magnetic} + F_{friction} = \nabla_y f(x, y) + 2q(\nabla_{xy} f) \dot{x} - \mu \dot{y}$$

Step 4 - Discretize the system: LEAD

$$m \ \ddot{x} = F_{vortex} + F_{magnetic} + F_{friction} = -\nabla_x f(x, y) - 2q(\nabla_{xy} f)\dot{y} - \mu \dot{x}$$

$$m \ \ddot{y} = F_{vortex} + F_{magnetic} + F_{friction} = \nabla_y f(x, y) + 2q(\nabla_{xy} f)\dot{x} - \mu \dot{y}$$

$$x_{k+1} = x_k + \beta(x_k - x_{k-1}) - \eta \nabla_x f(x_k, y_k) - \alpha \nabla_x f(x_k, y_k) (y_k - y_{k-1})$$

$$y_{k+1} = y_k + \beta(y_k - y_{k-1}) + \eta \nabla_y f(x_k, y_k) + \alpha \nabla_{xy} f(x_k, y_k)(x_k - x_{k-1})$$

LEAD - Experiments

•LEAD outperforms BigGAN in terms of FID with an architecture that is 30 times smaller.

ResNet	FID	IS
LEAD-Adam	10.49 ± 0.20	8.82 ± 0.05
Spectral Normalization*	12.1 ± 0.31	8.58 ± 0.39
ExtraAdam**	16.78 ± 0.21	8.47 ± 0.10
ODE-GAN***	11.85 ± 0.21	8.61 ± 0.06

^{*} SN from Miyato et al, 2018

Sample Generated output on CIFAR 10 with a ResNet Architecture

^{**} ExtraAdam from Gidel et al, 2018

^{***} ODE-GAN from Qin et al, 2020

LEAD: Least Action Dynamics for Min-Max Optimization

Blogpost: https://reyhaneaskari.github.io/LEAD.html

Paper: https://openreview.net/forum?id=vXSsTYs6ZB

Code: https://github.com/ReyhaneAskari/Least_action_dynamics_minmax