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Min-Max Optimization

» Optimize with respect to two players,

r* € argmin f(x,y")
T

y* € argmax g(z*,y)
Y

* Examples include,

GANSs Out-of-distribution generalization Adversarial Training
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Single-objective Optimization Min-Max Optimization

« Minimization on a smooth, differentiable loss,

r" € argmin f(x)
T

« Gradient Descent,

Vector-fiela v(x) := Vi f(x)

Tii1 = X — nu(xs)
» Update operator,

F,(xy) := 2 — nu(ay)

Gets X,
Returns x4

Stable fixed point of F,, is alocal minimum.

N

n(x”) =12
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Single-objective Optimization Min-Max Optimization

- Minimization on a smooth, differentiable loss, -Optimize f(x,y) with respect to two players,

r* € argmin f(x,y™)

X L X
y* € argmax f(z",y)
y

« Gradient Descent-Ascent,

r" € argmin f(x)
T

« Gradient Descent,

Vector-fiepv(gj) = Vo f(2) _ Vef(x,y) -

V@, y) = =V f(z,y).

Tii1 = X — nu(xs)

» Update operator, - Update operator on gradient descent-ascent,

A o N
Fn(ft) =z — NU(T4) Fn(ﬂi‘t, Yt) 1= ” — (T, Yi)

Gets X,
Returns x4

Stable fixed point of F,, is alocal minimum.

N

n(x”) =12

Stable fixed point of £, is alocal Nash equilibrium.
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F;, is convergent if the spectral radius of VF, atthe fixed point, is smaller than one.

The largest eigenvalueﬁ/j
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F;, is convergent if the spectral radius of VF, atthe fixed point, is smaller than one.

The largest eigenvalueﬁ/j VFn — 7 _ nvv
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F;, is convergent if the spectral radius of VF, atthe fixed point, is smaller than one.

The largest eigenva ueﬁ/j VFU — 7 _ nvv

Single-objective Optimization Min-Max Optimization

|

Vv is the Hessian

l

Symmetric

|

All real eigenvalues

|

Well-known dynamics
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F;, is convergent if the spectral radius of VF, atthe fixed point, is smaller than one.

The largest eigenvalueﬁ/j VFU — 7 _ nvv

Min-Max Optimization

|

Vv is a Jacobian

|

Might be non-symmetric

!

Imaginary eigenvalues

|

Rotational Dynamics

Single-objective Optimization

|

Vv is the Hessian

l

Symmetric

|

All real eigenvalues

|

Well-known dynamics
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Motivation

» Understand game optimization from a physical perspective.

*Model games as a physical system and manipulate the system to curb the rotational dynamics.
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Physics Perspective, recipe from minimization

Common intuition in optimization:
Polyak momentum (heavy ball) is described as an object moving inside a potential well and is accelerating while moving
towards the minimum.
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Physics Perspective, recipe from minimization

Common intuition in optimization:
Polyak momentum (heavy ball) is described as an object moving inside a potential well and is accelerating while moving
towards the minimum.

Model ICIDL’[Jfr] s;;stem using Path of the Replace the net
all tne Torces — particle in a— force with the —p =V f(x) =mi
F=ma continuous time gradients

Discretize the
continuous-time — Tp11 = Tk + B(xr — Tp—1) — NV f(xk) S
system

Polyak
momentum!
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Physics Perspective, intuition from minimization

Model min-max optimization
as a physical system with
rotational dynamics

Continuous time Equation
of motion using all the
forces in the system

Introduce relevant
forces in the system
to curb the rotations

Discretize the
continuous-time
system

Determine the
equations of motion

New optimization
algorithm!
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Step1 - Model Min-Max optimization as a physical system

Continuous-time dynamics of GDA with momentum in a 2-D plane

T = _vmf(xay)
Yy = Vyf(:c,y)
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Step1 - Model Min-Max optimization as a physical system

Continuous-time dynamics of GDA with momentum in a 2-D plane

T = —Vg;f(ZE, y) MI = Fyortex = _me(xay)

similar force in
Vyf(z,y)

nature

:i/. — Vyf(:c, y) my — Fvortex
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Step1 - Model Min-Max optimization as a physical system

Continuous-time dynamics of GDA with momentum in a 2-D plane

m & = Fyorter = —me(a?, y)
m y — Fvorte:c — vyf(wa y) |
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Step1 - Model Min-Max optimization as a physical system
Continuous-time dynamics of GDA with momentum in a 2-D plane

m & = Fyorter = —Va,f(a?, y)
m y — F’vortex — vyf(aja y) |

Vortex Force:
1. Exhibit rotational dynamics
2. Increases the velocity
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Step 2: Introduce relevant forces to curb the rotations
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Step 2: Introduce relevant forces to curb the rotations

Magnetic force is also known to produce rotations,

m r = Fvortea: + Fmagnetz'c — —me(gj, y) — ZQ(vaf)y
m Y = Foortez + Lmagnetic = Vo, f(x,y) +2q(Vey f)a

charge
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Step 2: Introduce relevant forces to curb the rotations

Magnetic force is also known to produce rotations,

sq.www\\:2qiin

m r = Fvortea: + Fmagnetic — —me(gj, y) — Q(J(mef)y
m Y = Foortez + Lmagnetic = Vo, f(x,y) +2q(Vey f)a

charge

g\mo2.002
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Step 2: Introduce relevant forces to curb the rotations

Magnetic force is also known to produce rotations,

sq.www\\:2qiin

m & = Fyortex + Fmagnetic

—Vaof(2,y) —29(Vay f)Y
Vyf(CIZ, y) T zc.l(vzcyf)jj

charge

m y — Fvortea: —+ Fmagnetic

slur-bnsn-inpit\esbiup\etouboig\moo.oo2

Vortex Force:
1. Exhibit rotational dynamics «/

2. Increases the velocity \

But, magnetic force only changes the direction of
movement and not the velocity.
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Step 3: Introduce relevant forces to reduce the velocity

Need to add some form of dissipation; simplest form is friction

m & = Fyortex + Fmagnetic +

m y — Fvortea: —+ Fmagnetic +

= =V f(z,y) —2¢(Vay f)y — pa

— vyf(xa y) -+ ZQ(v:cyf)

T — LY

\

friction coefficient
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Step 3: Introduce relevant forces to reduce the velocity

Need to add some form of dissipation; simplest form is friction

m £ = Fyortex + Fmagnetz'c + — _va;f(x, y) — QQ(nyf)y — ,U,CE

m y = Fyortex + Fmagnetic -+ — vyf(xa y) -+ ZQ(VCByf)j: - ’uy

\

friction coefficient

Vortex Force:
1. Exhibit rotational dynamics +/
2. Increases the velocity ./

———
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The friction causes the particle to lose speed and converge!
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Step 4 - Discretize the system: LEAD

m T = Foortex + Fmagnetic + — —fo(IE, y) — QQ(nyf)y — ,UQU
m y = Fuortex + Fmagnetz'c + — Vyf(a?, y) + QQ(nyf)ZU — My
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Step 4 - Discretize the system: LEAD

m T = Foortex + Fmagnetic + — _vxf(x, y) — 2Q(V;cyf)y — ,UQZ
m y = Fuortex + Fmagnetic + — Vyf(a?, y) + 2Q(vmyf)33 — ,U:y

discretization l

Trt1 = Tk + 5(3% — CEk—l) — vaf(l‘k, yk) — ava:yf(xka yk)(yk — yk—l)

Yk+1 = Yk + Bk — Yk—1) + OV f (T, Yk) + &V f(Zk, Yr) (T — Ti—1)
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LEAD - Experiments

* LEAD outperforms BigGAN in terms of FID with an architecture that is 30 times smaller.

ResNet FID IS

LEAD-Adam 10.49 4+ 0.20 8.82 +0.05
Spectral Normalization® 19 1 + 0.31 8.58 +0.39
ExtraAdam** 16.78 4+ 0.21 8.47 £+ 0.10
ODE-GAN *** 11.85 = 0.21 R 61+ 0.06

* SN from Miyato et al, 2018

x+ ExtraAdam from Gidel et al, 2018

#x ODE-GAN from Qin et al, 2020
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Sample Generated output on CIFAR 10
with a ResNet Architecture
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LEAD: Least Action Dynamics for Min-Max Optimization

Blogpost: https://reyhaneaskari.github.io/LEAD.html
Paper: https://openreview.net/forum?id=vXSsTYs6ZB

Code: https://github.com/ReyhaneAskari/Least_action_dynamics_minmax



