

Problem Setup

 $y_i = \mathrm{sign}(A_{g_i} x_i)$ for $i=1,\ldots,N$

where $y_i \in \{-1,1\}^m$ measurement $x_i \in \mathcal{X} \subset \mathbb{S}^{n-1}$ signal $A_g \in \mathbb{R}^{m imes n}$ forward operator $g_i \in \{0,1,\ldots,G\}$

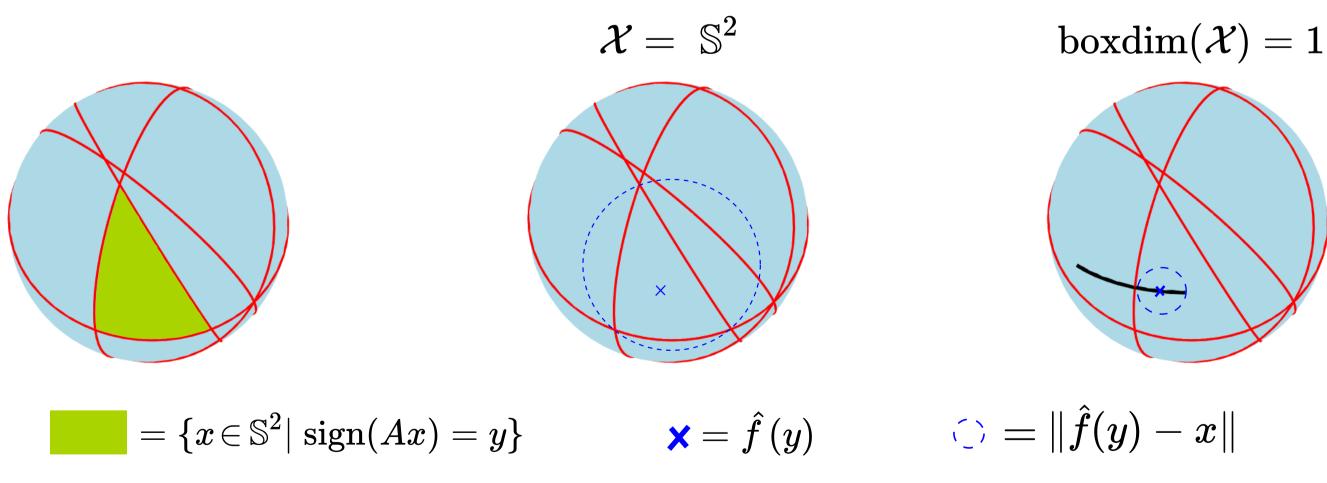
Invariant \mathcal{X} : $A_q = AT_q$ where T_q are translations, rotations, etc. Applications: 1-bit matrix completion, 1-bit compressed sensing, etc.

Signal Reconstruction

Can we recover a signal from its binary observation with known \mathcal{X} ?

Optimal reconstruction:

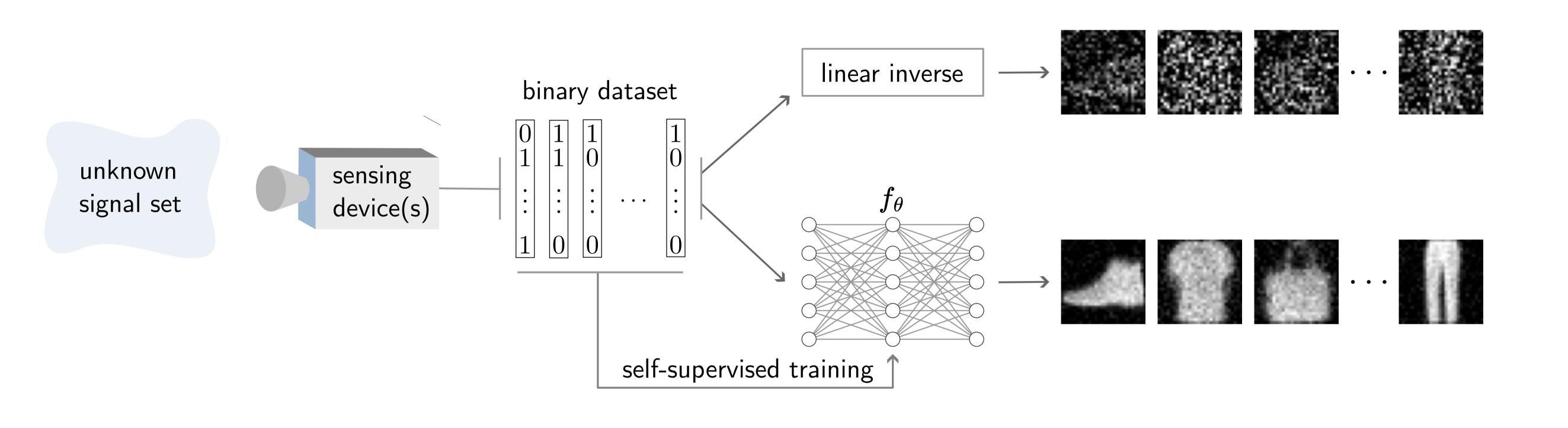
$$\widehat{f}(y) = ext{centroid}\left(\{x: ext{sign}(Ax) = y\} \cap \mathcal{X}
ight)$$



Theorem: $A \sim \mathcal{N}(0, I_{m \times n})$ and $\operatorname{boxdim}(\mathcal{X}) = k$ $\|\hat{f}(y) - x\| \lesssim rac{k}{m} \log rac{nm}{k} \quad$ with high probability.

Learning to Reconstruct **From Binary Measurements Alone**

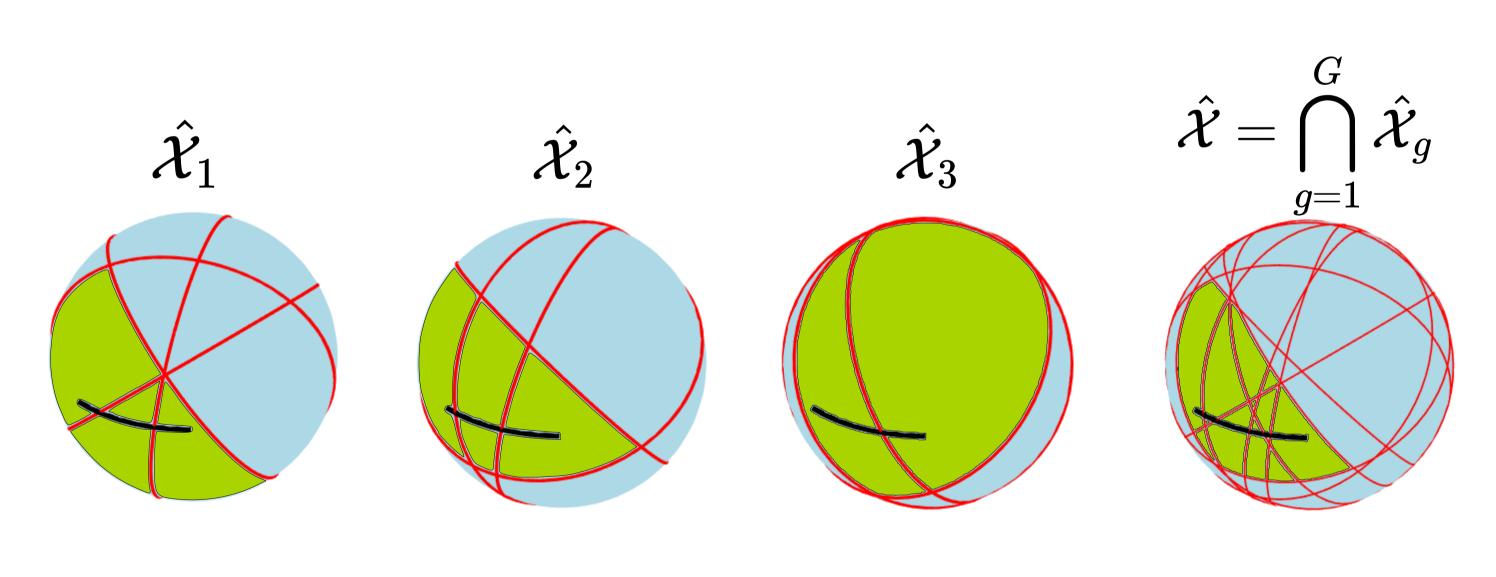
Julián Tachella (CNRS) and Laurent Jacques (UCLouvain) **TMLR Featured Paper**



Model Identification

Can we identify the signal set \mathcal{X} from $\{\operatorname{sign}(A_g\mathcal{X})\}_{g=1}^G$

Estimation of signal set from g-th operator: $\hat{\mathcal{X}}_q = \{ x \}$



Identification error: $\min\{\delta \ge 0 : \hat{\mathcal{X}} \subseteq \mathcal{X}_{\delta}\}$ where

Theorem (lower bound): for any $A \in \mathbb{R}^{m \times n} \implies \delta$

Theorems: for $A_a \sim \mathcal{N}(0, I_{m \times n})$ and $boxdim(\mathcal{X}) = k$ with high probability (upper bound) (sample complexity)

$$\delta \lesssim rac{k+n/G}{m} ext{log} rac{nm}{k+n/G}$$

Self-Supervised Learning

Multiple operators:

 $\mathcal{L}(heta) =$

 $\mathcal{L}(heta) =$

Experiments

linear inverse

BIHT

proposed

ground truth

References

Davenport et al. 1-bit matrix completion. 2014 Jacques et al. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors (). 2013 Goyal et al. Quantized overcomplete expansions in : analysis, synthesis, and algorithms (). 1996 Tachella et al. Sensing Theorems for Unsupervised Learning in Linear Inverse Problems (JMLR). 2023

$$v\in \mathbb{S}^{n-1}: \exists x_g\in \mathcal{X}, \; \mathrm{sign}(A_gv)=\mathrm{sign}(A_gx_g)\}$$

$$oldsymbol{ } \mathcal{X}_{\delta} = \{ v \in \mathbb{S}^{n-1} : \inf_{x \in \mathcal{X}} \|x-v\| < \delta \}$$

$$\delta > rac{2}{3}rac{n}{mG}$$

$$N \lesssim Gigg(rac{m\sqrt{n}}{k}igg)^k$$

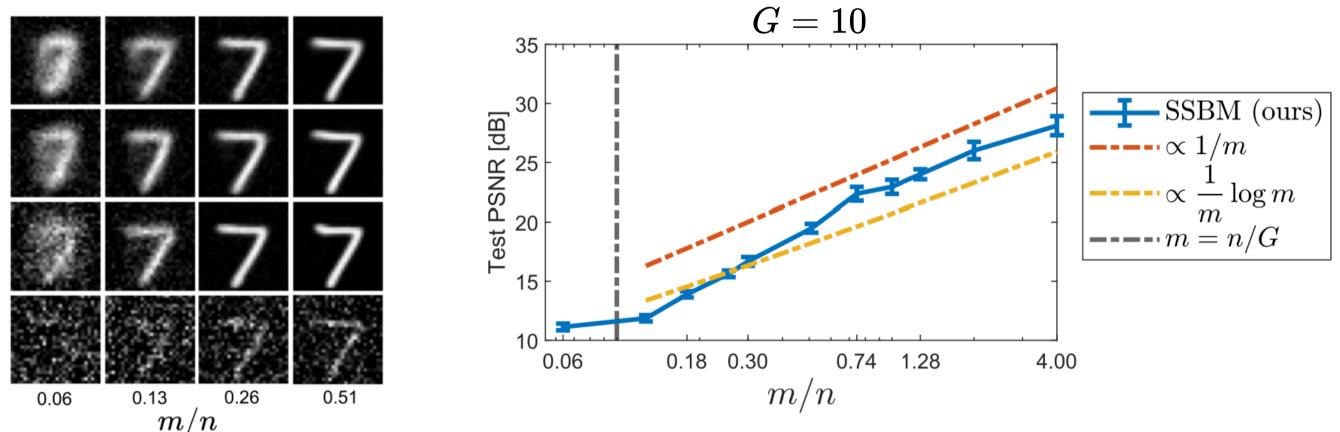
Goal: learn reconstruction network $\hat{x} = f_{\theta}(y)$ from $\{y_i\}_{i=1}^N$

$$\sum_{i=1}^N ext{softmargin}\left(y_i, A_{g_i}f_ heta(y_i, A_{g_i})
ight) + lpha \sum_{s=1}^G \|\hat{x}_{i, heta} - f_ heta(A_s \hat{x}_{i, heta})\|^2 ext{ with } \hat{x}_{i, heta} = f_ heta(y_i, A_{g_i})$$

Single operator and invariant \mathcal{X} :

$$\sum_{i=1}^N ext{softmargin}\left(y_i, Af_ heta(y_i)
ight) + lpha \sum_{s=1}^G \|T_s \hat{x}_{i, heta} - f_ heta(AT_s \hat{x}_{i, heta})\|^2 \quad ext{with} \quad \hat{x}_{i, heta} = f_ heta(y_i)$$

MNIST dataset:



CelebA dataset: G = 10, m = 0.2n

