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Motivation: Understanding the Robustness Difference
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Figure 1: Comparison between models trained using SGD, Adam,

and RMSProp. Models trained by different algorithms have similar

standard generalization performance, but there is a distinct robustness

difference as measured by the test data accuracy under Gaussian noise, ℓ2
and ℓ∞ bounded adversarial perturbations.1

1
Croce et al., Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
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Motivation: Understanding the Robustness Difference

More on the motivating example:

1. Audio dataset.

• Classifying short audio phrases (i.e., numbers, directions, etc.)

from the Speech Commands dataset2.

2. Both CNN and transformer architectures.

⇒ Observing the robustness differences trained by different

optimizers, consistently.

2
Warden et al., A dataset for limited-vocabulary speech recognition.
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Main Claim

To optimize the standard training objective, models only need to

learn how to correctly use relevant information in the data.

Their use of irrelevant information in the data, however, is

under-constrained and can lead to solutions sensitive to

perturbations.
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Observation I: Irrelevant Frequencies in Natural Signals

To optimize the standard training objective, models only need to learn how to correctly use relevant information in

the data (OB I). Their use of irrelevant information in the data, however, is under-constrained and can lead to

solutions sensitive to perturbations (OB II).

0 10 20 30

0

10

20

30

Spectral energy distribution 
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

0

5

10

15

M
ag

ni
tu

de
 o

f s
pe

ct
ra

l e
ne

rg
y

0 10 20 30

0

10

20

30

Log scale spectral energy distribution 
 averaged over all training inputs

0 5 10 15 20 25 30
(i, i)-th DCT Frequency Basis

4

2

0

2

Lo
g 

sc
al

e 
m

ag
ni

tu
de

 o
f 

 sp
ec

tra
l e

ne
rg

y

5

10

15

4

2

0

2

Figure 2: Illustration of the spectral energy distribution in

CIFAR100. Distribution of the spectral energy heavily concentrates at

low frequencies and decays exponentially towards higher frequencies.
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Observation I: Irrelevant Frequencies in Natural Signals
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Observation I: Irrelevant Frequencies in Natural Signals

To optimize the standard training objective, models only need to learn how to correctly use relevant information in

the data (OB I). Their use of irrelevant information in the data, however, is under-constrained and can lead to

solutions sensitive to perturbations (OB II).
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a. Parts of the signal with low

spectral energy is irrelevant.

0 10 30 50 70 90
p: percentage of DCT bases removed based on its frequency

80

85

90

95

Ac
cu

ra
cy

 o
n 

th
e 

 
 o

rig
in

al
 te

st
 se

t (
%

)

b. Parts of the signal with

high-frequency basis is irrelevant.

Figure 4: Irrelevant frequencies exist in the natural data. Accuracy

on the original test set remains high when the training inputs are

augmented by removing parts of the signal with a) low spectrum energy

and b) high frequencies.
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Observation I: Irrelevant Frequencies in Natural Signals
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Observation II: Model Robustness along Irrelevant Frequencies

To optimize the standard training objective, models only need to learn how to correctly use relevant information in

the data (OB I). Their use of irrelevant information in the data, however, is under-constrained and can lead to

solutions sensitive to perturbations (OB II).
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Figure 6: The effect of band-limited Gaussian perturbations on the

model. Perturbations from the lowest band have a similar effect on all

the models. On the other hand, models’ responses vary significantly

when the perturbation focuses on higher frequency bands.

⇒ This suggest that the robustness differences comes from the

different responses towards perturbations along those irrelevant

frequencies. 9



Theoretical Analysis with Linear

Models



Summarizing the Linear Analysis Result

Setup: In linear regression, we compare the standard and

adversarial risk of the GD and signGD solutions.

Data: A synthetic dataset that mimics the characteristics of a

natural dataset: contains irrelevant frequencies.
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Summarizing the Linear Analysis Result

We are interested in the standard risk:

Rs(w) ≜ E
[
ℓ(X ,Y ;w)

]
= E

[
|wTX − Y |2

]
and the adversarial risk under ℓ2 bounded perturbations:

Ra(w) ≜ E
[

max
||∆x||2≤ϵ

ℓ(X +∆x ,Y ;w)

]
= E

[
max

||∆x||2≤ϵ
|wT (X +∆x)− Y |2

]
.
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Linear Analysis: Three Main Results

1. Irrelevant information leads to multiple standard risk

minimizers. For an arbitrary minimizer w∗ from W∗, we can obtain

its the adversarial risk as

Ra(w
∗) =

ϵ2

2
||w∗||22.

⇒ Given that the linear model is a standard risk minimizer, its

robustness against ℓ2-norm bounded perturbations is proportional

to its ℓ2 norm squared.

12



Linear Analysis: Three Main Results

2. With a sufficiently small learning rate η, the standard risk of GD

and signGD can be both close to 0.

⇒ Providing an explanation to the similar standard generalization

performance observed on neural networks.

13



Linear Analysis: Three Main Results

3. Consider a three dimensional input space, we demonstrate that

ratio between the two adversarial risks is always greater than 1:

Ra(w signGD)

Ra(wGD)
> 1 + C ,

where C > 0 and its value depends on initialization, and the

magnitude of the data covariance.

⇒ The linear model obtained through GD is always more robust

against ℓ2-bounded perturbations in comparison to the model

obtained from signGD.

14



Can we show something similar to

Ra(w
∗) = ϵ2

2 ||w
∗||22 on neural networks?



Product of Weight Norm of NN Upper-bounds its Lipschitzness

Consider the form f (x) = (ϕl ◦ ϕl−1 ◦ ... ◦ ϕ1)(x), where each ϕi is a linear operation,

an activation function, or pooling operation.

Denoting the Lipschitz constant of function f as L(f ), we can establish an upper

bound3 on the Lipschitz constant for the entire feed-forward neural network using

L(f ) ≤
l∏

i=1

L(ϕi ).

The approximation to the Lipschitzness of various components of the network are

typically functions of the weight norm. Examples: Linear operations: ∥W ∥p ;
Skip-connections: ∥W ∥p + 1.

⇒ Smaller weight norm implies smaller Lipschitz upper bound. Less vulnerable to

perturbations.

3
Any value of L satisfying the Lipschitz condition is considered a valid Lipschitz constant. For the sake of clarity,

we will refer to the smallest (optimal) Lipschitz constant as L

15



Product of Weight Norm of NN Upper-bounds its Lipschitzness

Table 1: Comparing the upper bound on the Lipschitz constant

and the averaged robust accuracy of neural networks trained by

SGD, Adam, and RMSProp.

Dataset MNIST Fashion CIFAR10 CIFAR100 SVHN Caltech101 Imagenette

∏l
i=1 L(ϕi )

SGD 3.80 3.83 26.81 40.41 22.65 18.53 23.99

Adam 5.75 8.12 28.70 41.87 30.45 26.20 28.55

RMSProp 6.21 5.11 37.75 41.71 28.31 45.84 27.11

Averaged

Robust Acc.

SGD 77.97% 77.95% 63.21% 55.65% 69.08% 71.42% 67.59%

Adam 65.64% 67.60% 57.71% 45.25% 65.60% 55.03% 58.86%

RMSProp 63.54% 71.34% 56.47% 47.55% 65.37% 53.16% 57.98%

• SGD-trained neural networks have considerably smaller

Lipschitz constants across all datasets.

• Explaining the better robustness to perturbations than those

trained with adaptive gradient methods as shown in the

motivating example. 16



Summary

Motivation

Large robustness difference between models trained by SGD and adaptive

gradient methods, despite similar standard generalization.

Claims + empirical observations

To optimize the standard training objective, models only need to learn

how to correctly use relevant information in the data. Their use of

irrelevant information in the data, however, is under-constrained and can

lead to solutions sensitive to perturbations.

Theoretical analysis with linear models

We show the asymptotic solution found by signGD is always more

vulnerable.

Back to neural networks

We demonstrate a connection between Lipschitz upper bound and model

robustness.
17



Practical Implications

This work

• highlights the importance of optimizer selection in achieving both

generalization and robustness.

• guides the development of optimization strategies that maintain

high accuracy while being resilient to input perturbations.

• Possible remedy: Initialization, Regularization (i.e.,

Adam/RMSProp+L2 or AdamW4).

4
Loshchilov et al., Decoupled Weight Decay Regularization, ICLR 2019
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Thank you!
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