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Climate change warrants rapid action
Impacts felt globally
- Disproportionate effects on most 

disadvantaged populations

Need net-zero greenhouse gas 
emissions by 2050 [IPCC 2018]
- Across energy, transport, buildings, 

industry, agriculture, forestry, etc.

Need large-scale adaptation efforts
- Inherently local, at a global scale

How does AI factor in?
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AI applications for 
climate action

AI applications 
that increase 

emissions

AI and climate change
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AI’s system-level 
impacts

Impacts from AI 
computation & 

hardware

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10.
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Distilling raw data (emissions, deforestation, buildings, crops, policy)
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AI for climate action: Recurring themes

Image source: Climate TRACE



AI for climate action: Recurring themes
Distilling raw data (emissions, deforestation, buildings, crops, policy)

Improving predictions (renewables, transportation demand, extreme events)
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Image source: Open Climate Fix
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AI for climate action: Recurring themes
Distilling raw data (emissions, deforestation, buildings, crops, policy)

Improving predictions (renewables, transportation demand, extreme events)

Optimizing complex systems (heating and cooling, power grids, freight)

Predictive maintenance (methane leaks, resilient infrastructure) 

Accelerating scientific discovery 
(batteries, electrofuels, CO2 sorbents)

Approximating time-intensive simulations
(climate, energy, city planning)

Data management 
(data matching/fusion, data generation)
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Image source: Chen, Wang, Kirschen, Zhang, 2018



Physics-informed and robust ML
Interpretable ML
Uncertainty quantification
Generalization and causality
….

Demands of the climate change domain 
should shape innovations
- See ICML 2022 climate change tutorial 

(icml.cc/virtual/2022/tutorial/18443)
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Many opportunities for 
innovation

https://icml.cc/virtual/2022/tutorial/18443
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Impacts from AI computation & hardware

Operational impacts 
from energy & water 
consumed during 
computation

Embodied emissions & 
materials impacts from 
production, transport, 
and disposal of hardware

17Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10.

in 2020



Electricity demand is rapidly growing
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~2x increase btwn 
2021 and 2026

Figure source: IEA (International Energy Agency), “Electricity 2024: Analysis and forecast to 2026” [DATE]



Electricity demand is rapidly growing
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2010 2018

> 2x increase 
btwn 2019 and 2026

Source: IEA, “Electricity 2024: Analysis and forecast to 2026”
Rough estimates, based on: 
Masanet, Eric, et al. "Recalibrating global data center energy-use estimates." Science (2020)

6% increase 
btwn 2010 and 2018

(despite 5.5x increase 
in compute instances)



Changing emissions impacts of training vs. inference
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Wu, Carole-Jean, et al. "Sustainable AI: Environmental implications, challenges and 
opportunities." Proceedings of Machine Learning and Systems 4 (2022): 795-813.

Facebook: “The carbon footprint of the LM model is 
dominated by Inference whereas, for RM1 – RM5, the carbon 

footprint of Training versus Inference is roughly equal”

Per inference, multi-purpose models can be orders of 
magnitude more expensive than task-specific models

Luccioni, Alexandra Sasha, Jernite, Yacine, and Strubell, Emma. "Power 
Hungry Processing: ⚡Watts ⚡ Driving the Cost of AI Deployment?" arXiv 
preprint arXiv:2311.16863 (2023)



“Greening the grid” is important but insufficient
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The path to net zero emissions is narrow: staying on it requires immediate and massive 
deployment of all available clean and efficient energy technologies. In the net zero 
emissions pathway presented in this report, the world economy in 2030 is some 40% larger than 
today but uses 7% less energy. A major worldwide push to increase energy efficiency is an 
essential part of these efforts, resulting in the annual rate of energy intensity improvements 
averaging 4% to 2030 – about three-times the average rate achieved over the last two decades.

Source: IEA, “Net Zero by 2050: A Roadmap for the Global Energy Sector” (2021)

While the carbon costs of data centers have been the primary focus of attention in the 
news, data centers also rely on immense amounts of water for both electricity production 
and cooling. To supply their centers, many tech firms draw from public water supplies and 
aquifers, adding to regional water stress—while being built in some of the world’s most 
drought-prone areas.

Source: Amba Kak and Sarah Myers West, “AI Now 2023 Landscape: Confronting Tech Power,” AI Now Institute (2023).

The term “artificial intelligence” may invoke ideas of algorithms, data, 
and cloud architectures, but none of that can function without the 
minerals and resources that build computing’s core components.

Source: Kate Crawford, “Atlas of AI” (2021)
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AI use to accelerate emissions-
intensive industries

Example: Oil and gas applications 
[Greenpeace “Oil in the Cloud” 2020]

- AI has boosted production levels in 
some cases by as much as 5%

- AI could generate $425 billion in 
value for oil/gas sector by 2025

Example: AI use in “Internet of Cows” 
to manage livestock at scale

24

Image source: Greenpeace

AI applications increasing emissions
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Potential rebound and lock-in effects
- Autonomous vehicles, ridesharing
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Image source: Wadud et al. 2016

System-level impacts of AI applications



Potential rebound and lock-in effects
- Autonomous vehicles, ridesharing

Increasing societal consumption
- Personalized ads, on-demand delivery
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System-level impacts of AI applications

Image credit: Megan_Rexazin_Conde / Pixabay.com



Potential rebound and lock-in effects
- Autonomous vehicles, ridesharing

Increasing societal consumption
- Personalized ads, on-demand delivery

(Mis)information and polarization
- Content personalization/amplification
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System-level impacts of AI applications

Image credit: Rose Wong / for NBC News



Potential rebound and lock-in effects
- Autonomous vehicles, ridesharing

Increasing societal consumption
- Personalized ads, on-demand delivery

(Mis)information and polarization
- Content personalization/amplification

Inducing societal power shifts                          
due to access and agency

29

System-level impacts of AI applications

Image credit: Jamillah Knowles & We and AI / Better Images of 
AI / People and Ivory Tower AI / CC-BY 4.0
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Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10.
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Diverse settings require diverse approaches
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Dominant ML paradigm (e.g.) Differences on the ground (e.g.)

Big data

Big compute

Data is all you need

Performance = average accuracy

Less data; data hard to move

Less compute; edge devices;   
reducing energy/emissions

Useful knowledge from task/domain

Diverse set of metrics
(e.g., group-weighted accuracy, safety, 
robustness, privacy, interpretability, 
explainability, uncertainty quantification, …)

See also: Birhane, Abeba, et al. "The values encoded in machine learning research." ACM Conference on Fairness, Accountability, and Transparency. 2022. 



Methodological frontiers with climate relevance

34
See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.



Methodological frontiers with climate relevance
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Physics-informed ML

Safe and robust ML

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.

Climate prediction Electricity systems Buildings & cities

Transportation Industry Land use (agriculture)

Earth, atmospheric, oceanic modeling
Power system optimization & control

Aerodynamic efficiency modeling
Design of low-materials structures

Precision agriculture

Urban environmental simulationsWind farm optimization

Battery and alternative fuel R&D
Equipment control & demand response Cleaner ammonia production

Building heating & cooling control



Methodological frontiers with climate relevance
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Physics-informed ML

Safe and robust ML

Interpretable ML

Uncertainty quantification

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.

Policy-making on international, 
national, and local levels

Planning and operation 
of critical infrastructure

Early warning and 
emergency response

Monitoring, reporting, and verification of 
emissions and climate change effects

Scientific understanding and 
predictions of climate change

Innovation and technology 
assessment



Methodological frontiers with climate relevance
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Physics-informed ML

Safe and robust ML

Interpretable ML

Uncertainty quantification

Generalization 
(spatio-temporal, concept drift, limited data)

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.

G. Tseng, et al., "CropHarvest: A global 
dataset for crop-type classification," 
NeurIPS 2021 Datasets and 
Benchmarks Track.

G. Van Horn et al., "The iNaturalist 
species classification and 
detection dataset," CVPR 2018.



Methodological frontiers with climate relevance
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Physics-informed ML

Safe and robust ML

Interpretable ML

Uncertainty quantification

Generalization 
(spatio-temporal, concept drift, limited data)

Causality

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.

A. Jesson et al., "Using non-linear causal models to study aerosol-cloud 
interactions in the southeast Pacific," Tackling Climate Change with Machine 
Learning workshop at NeurIPS 2021.



Methodological frontiers with climate relevance
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Physics-informed ML

Safe and robust ML

Interpretable ML

Uncertainty quantification

Generalization 
(spatio-temporal, concept drift, limited data)

Causality

Energy efficient ML & TinyML

AutoML

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.

AI’s system-
level impacts

Impacts from 
AI computation 

& hardware

AI applications for 
climate action

Tu, Renbo, et al. "AutoML for climate change: A call to action."  Tackling Climate 
Change with Machine Learning workshop at NeurIPS 2022.



Methodological frontiers with climate relevance
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Physics-informed ML

Safe and robust ML

Interpretable ML

Uncertainty quantification

Generalization 
(spatio-temporal, concept drift, limited data)

Causality

Energy efficient ML & TinyML

AutoML

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.

AI’s system-
level impacts

Impacts from 
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& hardware

AI applications for 
climate action



Demands of applications should shape innovations
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See: David Rolnick, Alan Aspuru-Guzik, Sara Beery, Bistra Dilkina, Priya L. Donti, Marzyeh Ghassemi, Hannah Kerner et al. 
"Application-Driven Innovation in Machine Learning." Forthcoming in International Conference on Learning Representations (2024).

Specific notions of robustness, 
interpretability, generalization, 
etc. differ across areas

Need to source datasets, 
requirements, success criteria, 
and constraints/metadata from 
a diverse set of tasks



Example: Differing notions of “robustness”
Adversarial robustness [ML]: Robustness to 
perturbations of inputs

Adversarial robustness figure source: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. ICLR.
Safe RL figure source: Garcıa, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. JMLR, 16(1), 1437-1480.
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Safe reinforcement learning [ML]: Avoid error states 
or catastrophic scenarios

Robust control [e.g., power systems, buildings]: Bring 
system to an equilibrium (e.g., Lyapunov stability)

Physical feasibility [e.g., power systems, climate science]: 
Ensure satisfaction of physical equations



Figure adapted from: US Congressional Budget Office

Physics: Power 
flows along lines

Hard constraints: 
Equipment constraints

Decision-making: Given (uncertain) demand, 
how do we schedule supply?

43

Hard constraints: 
Stability constraints

Trad. optimization & control
• Satisfies (many) constraints
• Struggles with speed / scale

Machine learning (ML)
• Fast and scalable
• Struggles with constraints

Our work: ML with engineering constraints (power grids)

Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.



Framework for developing ML methods that incorporate knowledge of physics, hard 
constraints, or downstream decision-making procedures, via optimization problems
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Model 
𝒉𝜽𝑥 ℎ"(𝑥)

Loss, e.g., 
ℓ 𝑦, ℎ! 𝑥

Optimization-in-the-loop ML

Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.



Optimization-in-the-loop ML
Framework for developing ML methods that incorporate knowledge of physics, hard 
constraints, or downstream decision-making procedures, via optimization problems
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Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.



Optimization-in-the-loop ML for power systems
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Provably robust control via 
deep reinforcement learning

(power, buildings)

Fast, feasible approximations to power 
systems optimization (ACOPF, SCOPF)

Decision-cognizant forecasting of 
supply & demand

Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.
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Electricity systems Buildings Transportation

Climate prediction Industry Societal adaptation
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Applications
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Work on climate-relevant applications J

Avoid work on applications clearly countering climate goals

Shape emissions impacts of “other” AI applications
- Autonomous vehicles [methods for public/multi-modal transit]
- On-demand delivery [fuel efficiency, bundling shipments]
- Content personalization/amplification [change objective functions]

Adopt an equity-focused lens (implications for climate justice/climate equity)
- Who am I working with? Whose problems am I centering? 
- Who has ownership/agency?

AI applications for 
climate action

AI applications 
that increase 

emissions

AI’s system-
level impacts
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Practices
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All
Advocate for organizational policies, e.g.
- Internal carbon pricing (covering scopes 1, 2, and 3)
- Ethics/best practices on work to pursue (consider emissions, equity)
- Transparency of reporting and impact assessment

Brainstorm ways to align “business as usual” AI with climate goals

Ensure education, capacity-building, and ownership among a 
diverse set of stakeholders

Develop cost-benefit frameworks (accuracy vs. efficiency)

Implement infrastructure for emissions-aware load scheduling

Avoid wasteful runs (e.g., better hyperparameter tuning)

AI’s system-
level impacts

Impacts from 
AI computation 

& hardware
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Public excitement for AI, but lack of mental model
AI for power grids – 

diverse tasks, methods, data modalities 
US AI Executive Order, on AI for power grids – 

anchored on foundation models & text 

 (g)  Within 180 days of the date of this order, to support the 
goal of strengthening our Nation’s resilience against climate 
change impacts and building an equitable clean energy 
economy for the future, the Secretary of Energy […] shall:
    (i) issue a public report describing the potential for AI to 
improve planning, permitting, investment, and operations for 
electric grid infrastructure […]
    (ii) develop tools that facilitate building foundation 
models useful for basic and applied science, including models 
that streamline permitting and environmental reviews while 
improving environmental and social outcomes; […]
    (iv) take steps to […] utilize the Department of Energy’s 
computing capabilities and AI testbeds to build foundation 
models that support new applications in science and energy […]

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., et al. (2022). Tackling climate 
change with machine learning. ACM Computing Surveys (CSUR), 55(2), 1-96.



Public communication
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All
Communicate with both the AI and general audiences in mind
- Be transparent about strengths, limitations, and risks

- Highlight diversity of methods & perspectives (in and outside AI)

Engage in thoughtful education of policymakers & general public

We are increasingly communicating to a non-AI audience [to many, AI = ChatGPT]

Sound understanding can facilitate widespread, on-the-ground impact

Poor mental models and misunderstandings can lead to
- Diversion of funding/attention from impactful but less flashy work 
- Opportunity costs with respect to fostering impactful work
- Unsound, irresponsible, or ill-informed AI use

AI applications for 
climate action
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Learn more & join in:   

www.climatechange.ai

         @ClimateChangeAI       

http://www.climatechange.ai/
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Methodological innovation

Applications (what & how)

Practices

Public communication

AI applications for 
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AI applications 
that increase 
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Impacts from 
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& hardware

Our work on AI matters for climate – 
and there’s a lot we can do about it. 


