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Climate change warrants rapid action

Impacts felt globally

- Disproportionate effects on most
disadvantaged populations

Need net-zero greenhouse gas
emissions by 2050 [IPCC 2018]

- Across energy, transport, buildings,
industry, agriculture, forestry, etc.

Need large-scale adaptation efforts
- Inherently local, at a global scale

How does Al factorin?




Al and climate change

Al applications for

climate action

Impacts from Al
computation &
hardware
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Al applications
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Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10.
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Al for climate action: Recurring themes

Distilling raw data (emissions, deforestation, buildings, crops, policy)

DEC 02,2023

Climate TRACE
Unveils Open
Emissions Database
Of More Than 352
Million Assets

The Climate TRACE inventory includes every country and
territory in the world, every major sector of the global
economy, and nearly every major source of greenhouse gas
emissions. Tesla, Polestar, Boeing, and others have already
moved swiftly to leverage the new dataset to pinpoint
decarbonization opportunities in their supply chains.

Image source: Climate TRACE



Al for climate action: Recurring themes

Distilling raw data (emissions, deforestation, buildings, crops, policy)

Improving predictions (renewables, transportation demand, extreme events)
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Al for climate action: Recurring themes

Distilling raw data (emissions, deforestation, buildings, crops, policy)

Improving predictions (renewables, transportation demand, extreme events)

Optimizing complex systems (heating and cooling, power grids, freight)

Images: Public domain



Al for climate action: Recurring themes

Distilling raw data (emissions, deforestation, buildings, crops, policy)

Improving predictions (renewables, transportation demand, extreme events)
Optimizing complex systems (heating and cooling, power grids, freight)

Predictive maintenance (methane leaks, resilient infrastructure)

ECG for 30.000 points

How works digital point diagnostics?
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Image source: Deutsche Bahn
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Al for climate action: Recurring themes

Distilling raw data (emissions, deforestation, buildings, crops, policy)

Improving predictions (renewables, transportation demand, extreme events)
Optimizing complex systems (heating and cooling, power grids, freight)
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Al for climate action: Recurring themes

Distilling raw data (emissions, deforestation, buildings, crops, policy)
Improving predictions (renewables, transportation demand, extreme events)
Optimizing complex systems (heating and cooling, power grids, freight)
Predictive maintenance (methane leaks, resilient infrastructure)

Accelerating scientific discovery
(batteries, electrofuels, CO, sorbents)

Approximating time-intensive simulations
(climate, energy, city planning)

St Sc Cu

(a) Predictions of one day.

Image source: Zantedeschi et al., 2019
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Al for climate action: Recurring themes

Distilling raw data (emissions, deforestation, buildings, crops, policy)
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Many opportunities for
innovation

Physics-informed and robust ML
Interpretable ML

Uncertainty quantification
Generalization and causality

Demands of the climate change domain
should shape innovations

- See ICML 2022 climate change tutorial
(icml.cc/virtual/2022/tutorial/18443)
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Transfer
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quantification
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learning

Mitigation
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Reducing current-system impacts
Ensuring global impact

Transportation
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Modal shift
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The future of cities
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Remote sensing of emissions
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Adaptation

Climate prediction
Uniting data, ML & climate science
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Societal impacts
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Engineering a control system
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Tools for Action

Individual action
Understanding personal footprint
Facilitating behavior change
Collective decisions
Modeling social interactions
Informing policy
Designing markets
Education
Finance
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Impacts from Al computation & hardware

Operational impacts
from energy & water
consumed during
computation

Embodied emissions &
materials impacts from
production, transport,
and disposal of hardware

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F.,

L RTTTTE
ICT sector

(~1.4%)
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Global GHG
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& Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10.
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Electricity demand is rapidly growing

Global electricity demand from data centres, Al, and cryptocurrencies, 2019-2026
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Figure source: IEA (International Energy Agency), “Electricity 2024: Analysis and forecast to 2026” [DATE] 18



Electricity demand is rapidly growing

Global electricity demand from data centres, Al, and cryptocurrencies, 2019-2026

< 1200

=

'_

1000 _
800 — : -
600 _e="< =--"
400 / -
200
2010 2018 %079 2020 2021 2022 2023 2024 2025 2026
Low case - = Base case = = High case
IEA. CCBY 4.0
6% Increase (despite 5.5x increase > 2X Increase
btwn 2010 and 2018 in compute instances) btwn 2019 and 2026

Rough estimates, based on: - :
Masanet, Eric, et al. "Recalibrating global data center energy-use estimates." Science (2020) Source: IEA, “Electricity 2024: Analysis and forecast to 2026” 19



Changing emissions impacts of training vs. inference

Facebook: “The carbon footprint of the LM model is
dominated by Inference whereas, for RM1 - RM5, the carbon
footprint of Training versus Inference is roughly equal”

Per inference, multi-purpose models can be orders of
magnitude more expensive than task-specific models
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Luccioni, Alexandra Sasha, Jernite, Yacine, and Strubell, Emma. "Power

Hungry Processing: 7~ Watts 7 Driving the Cost of Al Deployment?" arXiv
preprint arXiv:2311.16863 (2023) 20

Wu, Carole-Jean, et al. "Sustainable Al: Environmental implications, challenges and
opportunities." Proceedings of Machine Learning and Systems 4 (2022): 795-813.



“Greening the grid” is important but insufficient

The path to net zero emissions is narrow: staying on it requires immediate and massive
deployment of all available clean and efficient energy technologies. In the net zero
emissions pathway presented in this report, the world economy in 2030 is some 40% larger than
today but uses 7% less energy. A major worldwide push to increase energy efficiency is an
essential part of these efforts, resulting in the annual rate of energy intensity improvements
averaging 4% to 2030 — about three-times the average rate achieved over the last two decades.

Source: IEA, “Net Zero by 2050: A Roadmap for the Global Energy Sector” (2021)

While the carbon costs of data centers have been the primary focus of attention in the
news, data centers also rely on immense amounts of water for both electricity production
and cooling. To supply their centers, many tech firms draw from public water supplies and
aquifers, adding to regional water stress—while being built in some of the world’s most
drought-prone areas.

Source: Amba Kak and Sarah Myers West, “Al Now 2023 Landscape: Confronting Tech Power,” Al Now Institute (2023).

The term “artificial intelligence” may invoke ideas of algorithms, data,
and cloud architectures, but none of that can function without the
minerals and resources that build computing’s core components.

Source: Kate Crawford, “Atlas of Al” (2021)
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Al applications increasing emissions

The 3 Phases of Oil and Gas Operations

Upstream
Finding and Extracting Midstream

Oil and Gas Transporting and Storing Downstream

Oil and Gas Refining, Marketing, and
Selling Oil and Gas

Image source: Greenpeace

Al use to accelerate emissions-
intensive industries

Example: Oil and gas applications

[Greenpeace “Oil in the Cloud” 2020]

- Al has boosted production levels in
some cases by as much as 5%

- Al could generate $425 billion in
value for oil/gas sector by 2025

Example: Al use in “Internet of Cows”
to manage livestock at scale
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System-level impacts of Al applications

Potential rebound and lock-in effects

- Autonomous vehicles, ridesharing

Platooning

Eco-driving

Congestion mitigation
De-emphasized performance
Improved crash avoidance
Vehicle right-sizing

Higher highway speeds
Increased features

Travel cost reduction

New user groups

Changed mobility services

Infrastructure footprint*
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% changes in energy consumption due to vehicle automation

Image source: Wadud et al. 2016
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System-level impacts of Al applications

Potential rebound and lock-in effects
- Autonomous vehicles, ridesharing

Increasing societal consumption
- Personalized ads, on-demand delivery

=
s
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Image credit: Megan_Rexazin_Conde / Pixabay.com

/
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System-level impacts of Al applications

Potential rebound and lock-in effects
- Autonomous vehicles, ridesharing

Increasing societal consumption
- Personalized ads, on-demand delivery

(Mis)information and polarization
- Content personalization/amplification

Image credit: Rose Wong / for NBC News
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System-level impacts of Al applications

Potential rebound and lock-in effects
- Autonomous vehicles, ridesharing

Increasing societal consumption
- Personalized ads, on-demand delivery

(Mis)information and polarization
- Content personalization/amplification

Inducing societal power shifts
due to access and agency

Image credit: Jamillah Knowles & We and Al / Better Images of
Al / People and Ivory Tower Al / CC-BY 4.0
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Levers of impact for the Al community

Methodological innovation

Al applications for
climate action App[|cat|on5 (What & hOW)
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Practices

Public communication
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Diverse settings require diverse approaches

Dominant ML paradigm (e.g.) Differences on the ground (e.g.)
Big data Less data; data hard to move
Big compute Less compute; edge devices;

reducing energy/emissions
Data is all you need Useful knowledge from task/domain

Performance = average accuracy Diverse set of metrics
(e.g., group-weighted accuracy, safety,
robustness, privacy, interpretability,
explainability, uncertainty quantification, ...)

See also: Birhane, Abeba, et al. "The values encoded in machine learning research." ACM Conference on Fairness, Accountability, and Transparency. 2022.
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Methodological frontiers with climate relevance

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.
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Methodological frontiers with climate relevance

Physics-informed ML

Safe and robust ML ctimate prediction
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See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.
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Methodological frontiers with climate relevance

Physics-informed ML
Safe and robust ML

Precipitation changes at 2.0°C (3.6°F)

Interpretable ML

Uncertainty quantification

-40 -30 -20 -10 0 10 20 30 40
Percent change from 1850-1900 average

Scientific understanding and Monitoring, reporting, and verification of Early warning and
predictions of climate change emissions and climate change effects emergency response

Nations Unies
Changements Cimatiques
(UPZl/CMPll |

nférence sur les

e

Policy-making on international, Planning and operation Innovation and technology
national, and local levels of critical infrastructure assessment

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.
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Methodological frontiers with climate relevance

Physics-informed ML
Safe and robust ML
Interpretable ML

Uncertainty quantification s L

G. Tseng, et al., "CropHarvest: A global
dataset for crop-type classification,"
NeurlPS 2021 Datasets and
Benchmarks Track.

Binary Label W
G.Van Horn et al., "The iNaturalist

Generalization
(spatio-temporal, concept drift, limited data)

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.

101 4

species classification and
detection dataset," CVPR 2018.
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Sorted Species
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Methodological frontiers with climate relevance

Physics-informed ML
Safe and robust ML

Y

o
0
9
©

Interpretable ML

Uncertainty quantification

Generalization
(spatio-temporal, concept drift, limited data)

AOD  Aerosol optical depth T Temperature CFw  Warm Cloud Fraction
SST Sea surface temperature p Pressure r, Effective radius
o EIS Effective inversion strength S Supersaturation T Optical thickness
C a u S a l I ty W500 500 hPa vertical velocity N,  Droplet Number Concentration LWP  Liq. Water Path
RHX X hPa relative humidity a Aerosol

A. Jesson et al., "Using non-linear causal models to study aerosol-cloud
interactions in the southeast Pacific," Tackling Climate Change with Machine
Learning workshop at NeurlPS 2021.

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.
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Methodological frontiers with climate relevance

PhySiCS‘i nfO r,med M L [ AutoML Methods ] [ CCAI Benchmarks } [ Metrics of Interest }
¢ ) . Accuracy,
- erparameter ClimART (CA)
Safe and robust ML 7 R | - Hoe e
. 6 Open Catalyst Project Mean Absolute Error
) @% Neural Architecture (0C20) Between Energies
I nte rp reta b le M L ﬁ SRS Wind Power Forecasting Average Accuracy
(SDWPF) Across Turbines
I ifi i Tu, Renbo, et al. "AutoML for climate change: A call to action." Tackling Climate
ncertainty quantrication
Change with Machine Learning workshop at NeurlPS 2022.
Generalization
(spatio-temporal, concept drift, limited data) Al applications for
C lit climate action
ausality
Energy efficient ML & TinyML Impacts from ) )
&Y y Al computation AE s.ystem
& hardware level impacts
AutoML

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.



Methodological frontiers with climate relevance

Physics-informed ML

Safe and robust ML
Interpretable ML
Uncertainty quantification

Generalization

(spatio-temporal, concept drift, limited data) Al applications for
C lit climate action
ausality
el i Impacts from ,
Energy efficient ML & TinyML e
AutoML & hardware

See also: Priya L. Donti, David Rolnick, Lynn H. Kaack, “Climate Change and ML: Opportunities, Challenges, and Considerations,” ICML 2022 tutorial.
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Demands of applications should shape innovations

Specific notions of robustness,
interpretability, generalization,
etc. differ across areas

Need to source datasets,
requirements, success criteria,
and constraints/metadata from
a diverse set of tasks

methods designed
for real-world impact

N
&

=iy

ML research Applications & end-users

—

datasets
task framing
criteria for success
constraints / metadata

See: David Rolnick, Alan Aspuru-Guzik, Sara Beery, Bistra Dilkina, Priya L. Donti, Marzyeh Ghassemi, Hannah Kerner et al.
"Application-Driven Innovation in Machine Learning." Forthcoming in International Conference on Learning Representations (2024).



Example: Differing notions of “robustness”

Adversarial robustness [ML]: Robustness to Sasd *
perturbations of inputs |

T sign‘(‘VmJ(B,ai,y)) esign (V J(G ,4))
Safe reinforcement learning [ML]: Avoid error states JEENE
or catastrophic scenarios R ? 1

(a) (b)

Robust control [e.g., power systems, buildings]: Bring
system to an equilibrium (e.g., Lyapunov stability)

Physical feasibility [e.g., power systems, climate science]:
Ensure satisfaction of physical equations

Adversarial robustness figure source: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. ICLR.

Safe RL figure source: Garcia, J., & Fernandez, F. (2015). A comprehensive survey on safe reinforcement learning. JMLR, 16(1), 1437-1480. 4



Our work: ML with engineering constraints (power grids)

Decision-making: Given (uncertain) demand, Trad. optimization & control
how do we schedule supply? L e Satisfies (many) constraints

1l \ » Struggles with speed / scale
Hard constraints: | L

Equipment constraints

Physics: Power
$ flows along lines

[ SE S oy

Hard constraints:
Stability constraints

Machine learning (ML)
= e Fastand scalable
» Struggles with constraints

M
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Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022. Figure adapted from: US Congressional Budget Office



Optimization-in-the-loop ML

Framework for developing ML methods that incorporate knowledge of physics, hard
constraints, or downstream decision-making procedures, via optimization problems

Model Loss, e.g.,

h e 10 ko ()
hg(x)

Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.
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Optimization-in-the-loop ML

Framework for developing ML methods that incorporate knowledge of physics, hard
constraints, or downstream decision-making procedures, via optimization problems

c
2

g

g Loss, e.g.,
.g f(y, h@ (X))
wfd

Q.

@

Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.

45



Optimization-in-the-loop ML for power systems

problem (ACOPF)

Decision-cognizant forecasting of

!
CoJ)

elel®
l

Generator actions

mmyfz(y) L(‘)S_S_E_S-O_ft (Q)
y st ga(y) <0 e R

h(y) =0 ,// /'~
n st 0 Input x ,’ (y17 Y2,Y3, - - - 7yn) qutput

! Y

O II \ /\.
/ - correction
O I completion (<)
. v (=)
Generation scheduling

neural
[l ...
network ( y Y2, L, 7yn)

Fast, feasible approximations to power

supply & demand systems optimization (ACOPF, SCOPF)
Rﬁfﬁ'ﬁ:LControner% Plantmy Dmi  _
Provably robust control via
r |- o deep reinforcement learning
R (power, buildings)
Robust control

Deep RL

Donti, Priya L. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.
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Levers of impact for the Al community

Methodological innovation

Al applications for
climate action App[|cat|on5 (What & hOW)
Impacts from ,
. Al’s system-
Al computation .
hard
& hardware Al applications

that increase
emissions

Practices

Public communication
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Levers of impact for the Al community

Methodological innovation

Al applications for
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Impacts from ,
. Al’s system-
Al computation .
hard
& hardware Al applications

that increase
emissions

Practices

Public communication
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Electricity systems

Forecasting supply
Accelerating matenals science

Detecting methane leaks

\/’ﬁa oot - fusion science '
/

TR — ‘ & “‘ <

Fossil fuel power

Controllable low-carbon power

Improving scheduling
f fNexible demand

||

Modoeling emissions

[ existing infrastructure

modeling energy across buildings

o L3
B new infrastructure (unsustainable) B ul ld n gS

[l new infrastructure (sustainable)

gathering infrastructure data

o

modeling buildings energy S

=

3D building models

optimizing HVAC

= "
v data for smart cities
transfer
PN kr g efficient sensing

targeted retrofit strategies

smart buildings

® ;o
\ | B e

- coordinating between sectors

low-carbon infrastructure

' : clean

Forecasting dex

< (
\ /
A
L
Consumers

i energy access

mand

making
high-resolution
forecasts

learning ice

reﬂectivi
—

Climate prediction

simulating
cloud physics

classifying < learning from
land use » satellite data

=

Farmland

Remote sensing

of emissions La n d use

Estimating
carbon stock
Precision Monkort Automating ,Agfe"sfg,,',"ei
agriculture pgat'I:,’, gg afforestation 1 | _
Reducing
deforestation

Peatland

-
- -

Reducing

>»

transportation activity

Analyzing data

Remote sensing
Forecasting

Freight consolidation
Alternatives to transport

Modal shift
Consumer choices
Coordinating modes
Bike share rebalancing
Predictive maintenance
Enforcing regulation

¥

Transportation

m:m% Gﬂé

Vehicle efficiency
Designing for efficiency
Passenger Detecting loading inefficiency
3-D printing
* Autonomous vehicles

G == G
‘ ’ Alternative fuels

Research and development
Freight

Qs
i i

Electric vehicles
Charging patterns

Charge scheduling
Congestion management
Vehicle-to-grid algorithms
Battery energy management
Battery R&D

tracking
storms
simulating ‘ Design H Sourcing Manufacturing Distribution
g ocean
mixin,
9 3D printing Directing Optimizing Preventative Detecting Optimizing
& generative purchasers factories for maintenance GHG emissions shipping routes
design to low-GHG renewables & preventing
options ‘ overstocking
=3 o g
@ ©
Inventing Optimizing Improving Adaptive Streamlining Reducing
clean materials supply chains quality control heating and transport of
and catalysts cooling perishables

Industry

'
classifying trap images

analyzing sensors
=
aerial monitoring

surveying ]
epidemic risk

enabling
diagnoses

Mo ] o @,

citizen science detecting anomalies predicting failures

assessing
vuinerability
Ecological Resilient 4
awareness infrastructure (OIS
targeting upgrades
Societal Adaptation

Crisis / e Social A

readiness

annotating

N

o

[y
protecting refugees

J

resilient livelihoods

? i responding  Public health

! monitoring predicting to food

systems

disaster maps delivering alerts food supply food demand insecurity

Societal adaptation



Al applications for
climate action

Al applications
that increase
emissions

Al’s system-
level impacts

Applications

Work on climate-relevant applications ©
Avoid work on applications clearly countering climate goals

Shape emissions impacts of “other” Al applications

- Autonomous vehicles [methods for public/multi-modal transit]

- On-demand delivery [fuel efficiency, bundling shipments]

- Content personalization/amplification [change objective functions]

Adopt an equity-focused lens (implications for climate justice/climate equity)
- Who am I working with? Whose problems am | centering?
- Who has ownership/agency?
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Levers of impact for the Al community

Methodological innovation

Al applications for
climate action App[|cat|ons (What & hOW)
Impacts from ,
. Al’s system-
Al computation .
hard
& hardware Al applications

that increase
emissions

Practices

Public communication
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Al’s system-
level impacts

Impacts from
Al computation
& hardware

Practices

Advocate for organizational policies, e.g.

- Internal carbon pricing (covering scopes 1, 2, and 3)

- Ethics/best practices on work to pursue (consider emissions, equity)
- Transparency of reporting and impact assessment

Brainstorm ways to align “business as usual” Al with climate goals

Ensure education, capacity-building, and ownership among a
diverse set of stakeholders

Develop cost-benefit frameworks (accuracy vs. efficiency)

Implement infrastructure for emissions-aware load scheduling

Avoid wasteful runs (e.g., better hyperparameter tuning)



Levers of impact for the Al community

Methodological innovation

Al applications for
climate action App[|cat|on5 (What & hOW)
Impacts from ,
. Al’s system-
Al computation .
hard
& hardware Al applications

that increase
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Practices
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Public excitement for Al, but lack of mental model

Al for power grids - US Al Executive Order, on Al for power grids -
diverse tasks, methods, data modalities anchored on foundation models & text

Forecasting s pply Detecting methane leaks

L _— (g) Within 180 days of the date of this order, to support the

Managing existing technologie.

Variable low-carbon power ‘ “‘ .

| Controllable low-carbon p

' Q goal of strengthening our Nation’s resilience against climate
Fossi el power change impacts and building an equitable clean energy
WI economy for the future, the Secretary of Energy [...] shall:

(i) issue a public report describing the potential for Al to
improve planning, permitting, investment, and operations for
electric grid infrastructure [...]

(ii) develop tools that facilitate building foundation
models useful for basic and applied science, including models
that streamline permitting and environmental reviews while
improving environmental and social outcomes; [...]

(iv) take steps to [...] utilize the Department of Energy’s
computing capabilities and Al testbeds to build foundation
models that support new applications in science and energy [...]

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., et al. (2022). Tackling climate

change with machine learning. ACM Computing Surveys (CSUR), 55(2), 1-96. 54



Public communication

We are increasingly communicating to a non-Al audience [to many, Al = ChatGPT]
Sound understanding can facilitate widespread, on-the-ground impact

Poor mental models and misunderstandings can lead to

- Diversion of funding/attention from impactful but less flashy work
- Opportunity costs with respect to fostering impactful work
- Unsound, irresponsible, orill-informed Al use

Communicate with both the Al and general audiences in mind
All
- Be transparent about strengths, limitations, and risks

Al applications for
climate action

- Highlight diversity of methods & perspectives (in and outside Al

Engage in thoughtful education of policymakers & general public
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Climate Change Al

ICLR 2024 Workshop

Tackling Climate Change with
Machine Learning

May 11, 2024

Vienna, Austria-& Virtual (hybrid format)

Free livestream: www.climatechange.ai/events/iclr2024#livestream

Learn more: www.climatechange.ai/events/iclr2024

Organizers: Shiva Madadkhani (Technical University of Munich), Arthur Ouaknine (McGill,
Mila), Rasika Bhalerao (Northeastern University), Millie Chapman (National Center for
Ecological Analysis and Synthesis), Jesse Dunietz (Climate Change Al), Nikola Milojevic-
Dupont (MCC Berlin, Technical University of Berlin), Olivia Mendivil Ramos (Climate Change
Al), David Rolnick (McGill, Mila), Yoshua Bengio (Mila, UdeM)

Supported by:

Virtual program

Summer S ch 001 2. ; j
Virtual Program aﬁ‘d 2

In-Person Program 2

reglstratlon now open"’

sponsors:  Google Decpting CIFA

Learn more & join in:

www.climatechange.ai

WwOMm @ClimateChangeAl


http://www.climatechange.ai/

Levers of impact for the Al community

Al applications for
climate action

Impacts from . Applications (what & how)
Al computation s system-
& hardware — level impacts
Al applications

that increase Practices

emissions

Methodological innovation

Public communication

Our work on Al matters for climate -
and there’s a lot we can do about it.

58



