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INTRODUCTION

Vision-language (VL) models have gained broad competencies

that made evaluation difficult. Most existing benchmarks rely BY PERFORMANCE
on human intuition to categorize evaluation tasks. We propose _
a data-driven approach that leverages transfer performance AZO;\;C‘%;&‘:AKC Harmof'; mean
and Factor Analysis (FA) to identify latent skills essential for P |
VL tasks. Further, we discover patterns and biases from 2,784 vAv2 () - P
KS. ' P ' ScienceQA (MC) 3.8
experimental results. A-OKVOA (G) 46 it
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B Generation tasks exhibit a length bias, where the output OKVOA(G) g 3
length significantly influences transfer performance. WebCapFilt (G) 29
B Factor analysis effectively identifies unexpected yet IconQA (MC) 8.4 Figure 1: Cosine similarity of target tasks

computed using SVD features. OLIVE,
with an average similarity of -0.06, ranks
as the third least similar to other tasks.

reasonable factors that explain model performance.

B Datasets requiring reasoning on top of knowledge retrieval
Improve transfer performance.

Table 2: Harmonic mean of ranking
scores of source tasks across models

B The newly introduced OLIVE dataset exhibits behaviors OUTPUT LENGTH BIAS

markedly different from those of other datasets we

Source task Target task output length

experimented with. output length 1-3 6-12 >40
1-3 10.03/1.00 10.78/0.79 10.85/0.44
>40 10.90/0.43 10.87/0.28 10.26/0.55

We finetune four VLMs - BLIP-2, Mini-GPT4, LLaVA, and
MPLUG-0wl - across 23 source tasks and evaluate them on

Table 3: Mean normalized transfer performance by mean output lengths of source
and target tasks. Left (right) values consider all (top 5) source tasks in a group. In-
domain source tasks are excluded. A mismatch between output lengths results in

29 target tasks. Together with the model performance before o
significant performance drops.

any finetuning (zero-shot), we obtain 2,784 measurements.
EXPLORATORY FACTOR ANALYSIS

SOURCE AND TARGET TASKS | 3 |
We assume that each source task imparts specific latent skills to
Intuitive Task Source Target Intuitive Task Source Target a model. These skills, while not directly observable, are reflected
zaleqory caleqory in the model's performance on related target tasks. When target
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Table 1: Tasks overview. Each VQA dataset features two types of tasks: Generative (G), Gir;e,(,?(‘:“’e ég,‘ég_, ) Spatial <8:25—> CLEVR (MG
requiring exact matches with ground-truth answers, and Multiple-Choice (MC) with five evaluation 044 A-OKVAA(G) reasoning 0.5, —
answer options. * TextVQA (MC) & VSR (MC)

Figure 2: Results of EFA on the residuals A after isolating the dominating factor
Influencing classification and most VQA tasks. Black (red) arrows indicate positive
(negative) loadings. Cut-off for factor loadings=0.3. Notably, New Yorker
Explanation and Ranking, and Hateful Memes, do not have loadings above 0.3 on
any discovered factor.

THE OLIVE DATASET

We introduce a diverse
multimodal dataset,

Factors for Target Factors for
Containing 9'450 images' Generative Datasets Multiple Choice
Tasks Tasks
30,120 unique instructions, o o
. actor 1: aclor Z:
and 47,250 human-edited Knowledge- 0.78—» OKVQA “‘0-642 Knowledge-
' based VQA ﬁ‘l”* A-OKVOA 4—0897 o ased VQA
gold responses. . ST 2" —— 5
Instruction: What is the item in the image? ANned anQ :><
o _ Factor 2: Q- 060P  TextVOA 07} Factor 1:
OLIVE exhibits drastically Output: The item in the image is a solar OCR 0658 oeryon 408 YR

different behaviors from the
other datasets we
experimented with as shown
by SVD and factor analysis.

sall, which is a device that is designed to
harness the energy from sunlight to propel
a spacecraft through space without the use
of fuel. It is a square shaped piece of cloth
that acts like a sail and captures the
radiation pressure from the sun to propel
the spacecraft forward.
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Figure 3: Results of separate EFA on generative and MC VQA tasks. Cut-off for
factor loadings= 0.6. Similar structures observed highlight EFA’s efficacy in
capturing underlying structures with suitable data.
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