MindEye2: Shared-Subject Models Enable fMRI-To-Image With 1 Hour of Data

Paul S. Scotti^{1,2}, Mihir Tripathy^{†,2}, Cesar Torrico^{†,2}, Reese Kneeland^{†,3}, Tong Chen^{4,2}, Ashutosh Narang², Charan Santhirasegaran², Jonathan Xu^{5,2}, Thomas Naselaris³, Kenneth A. Norman⁶, Tanishq Mathew Abraham^{1,2} ¹Stability AI, ²Medical AI Research Center (MedARC), ³University of Minnesota, ⁴The University of Sydney, ⁵University of Waterloo, ⁶Princeton Neuroscience Institute

Our MedARC Neuroimaging & AI Lab is now working on real-time reconstructions and foundation neuroimaging models. Join our lab as a volunteer contributor: https://medarc.ai/fmri

Reconstructions of seen images from human brain activity using ONE hour of fMRI training data (previous work used FORTY hours)

1 hour

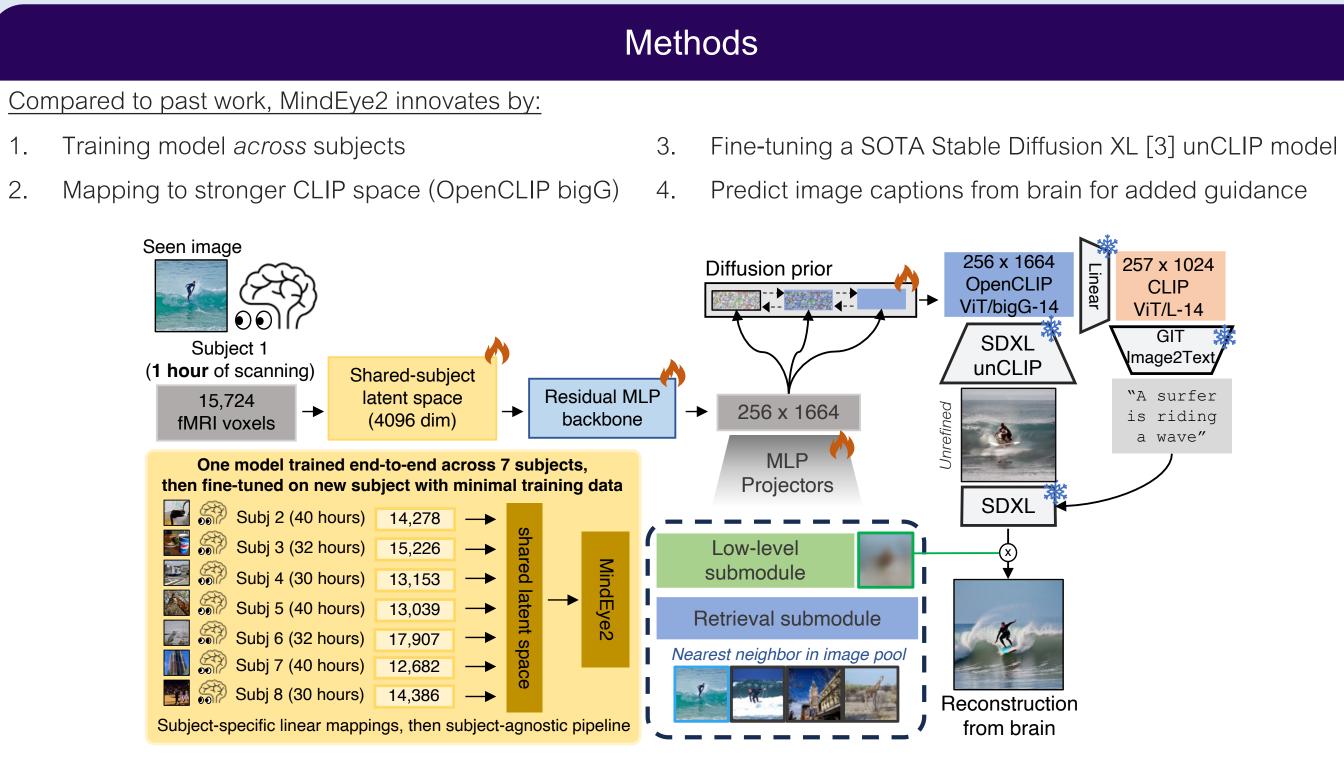
2 hours

Background

Functional magnetic resonance imaging (fMRI) measures neural activation as changes in blood oxygenation. Decoding seen images from fMRI enables better understanding of brain function and potential for mind-reading applications in braincomputer interfaces. fMRI is expensive and time-consuming so generalization with sparse training data is essential for practical adoption. We used the Natural Scenes Dataset (NSD) [1], a public fMRI dataset containing brain responses of human participants looking at naturalistic photographs (MS-COCO).

MindEye2 achieves state-of-the-art performance across retrieval and reconstruction.

<u>Retrieval</u>: identify the original (or most similar) image out of a pool of candidates (i.e., nearest neighbor) Reconstruction: recreate the original seen image (i.e., output from latent diffusion model)



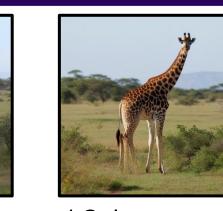
Each of 10,000 unique images was viewed 3x for 3 sec. Corresponding fMRI voxels (1.8mm cubes of cortex) were collected for each image presentation. We pretrain our model across 7 subjects and fine-tune on minimal data from a new subject. We linearly map all brain data to a shared-subject latent space, followed by a shared non-linear mapping to OpenCLIP [2] image space. We then map from CLIP space to pixel space by fine-tuning Stable Diffusion XL to accept CLIP latents as inputs instead of text.

References. [1] Allen et al. (2022). A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuro. [2] Ilharco et al. (2021). OpenCLIP. [3] Podell et al. (2023). Sdxl: Improving latent diffusion models for high-resolution image synthesis. ICLR. [4] Meng et al. (2022). SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. ICLR. [5] Reddy et al. (2010). Reading the mind's eye: Decoding category information during mental imagery. NeuroImage. [6] Wallace et al. (2022). RTCloud: A cloud-based software framework to simplify and standardize real-time fMRI. NeuroImage. [7] Scotti et al. (2023). Reconstructing the mind's eye: fMRI-to-image with contrastive learning and diffusion priors. NeurIPS.

Seen image

10 min.

30 min.



10 hours

40 hours

Seen image

30 min.

Reconstructions using 1 hour of training data

MindEye2

MindEye2 (not pretrained across subjects)

MindEye1 (Scotti et al., 2023) [7]

Brain Diffuser (Ozcelik et al., 2023)

Takagi et al. (2022)

Quantitative comparison to past work

Method	Low-Level			High-Level			Retrieval			
	PixCorr ↑	SSIM ↑	Alex(2) \uparrow	$Alex(5)$ \uparrow	Incep ↑	CLIP \uparrow	$\mathrm{Eff} \downarrow$	SwAV↓	Image ↑	Brain ↑
MindEye2	0.322	0.431	96.1%	98.6%	95.4%	93.0%	0.619	0.344	98.8%	98.3%
MindEye2 (unrefined)	0.278	0.328	95.2%	99.0%	96.4%	94.5%	0.622	0.343	_	_
MindEye1	0.319	0.360	$\overline{92.8\%}$	96.9%	94.6%	93.3%	0.648	0.377	90.0%	84.1%
Ozcelik and VanRullen (2023)	0.273	0.365	94.4%	96.6%	91.3%	$\overline{90.9\%}$	0.728	0.421	$\overline{18.8\%}$	$\overline{26.3\%}$
Takagi and Nishimoto (2023)	0.246	0.410	78.9%	85.6%	83.8%	82.1%	0.811	0.504	—	_
MindEye2 (low-level)	0.399	0.539	70.5%	65.1%	52.9%	57.2%	0.984	0.673	_	
MindEye2 (1 hour)	0.195	0.419	84.2%	90.6%	81.2%	79.2%	0.810	0.468	79.0%	57.4%

Results are from full 40-hours training data, averaged across the same 4 participants. PixCorr=pixelwise correlation between ground truth and reconstructions; SSIM=structural similarity index metric; EfficientNet-B1 and SwAV-ResNet50 refer to average correlation distance; all other metrics refer to two-way identification (chance = 50%). Image retrieval refers to the percent of the time the correct image was retrieved out of 300 candidates, given the associated brain sample (chance=0.3%); vice-versa for brain retrieval. Bold=best performance, <u>underline= 2nd best</u>.

Conclusions: Benefits & Risks/Limitations

- Potential for new clinical diagnostic methods: reconstructions are expected to be systematically distorted due to mental state.
- Potential to generalize to mental imagery: similar patterns of brain activity are observed across perception and mental imagery [5].
- Real-time brain-computer interfaces [6] e.g., communication with patients in a pseudocoma.

1 hour

2 hours

10 hours

40 hours

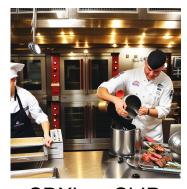
unCLIP comparison

Reconstructions from ground truth CLIP image embeddings

unCLIP models can convert CLIP image embeddings back to pixel space.

We fine-tuned SDXL to support CLIP image embedding inpu instead of text, raising ceiling reconstruction performance.

Original image



(OpenCLIP ViT-bigG/14)

Refinement with image caption prediction

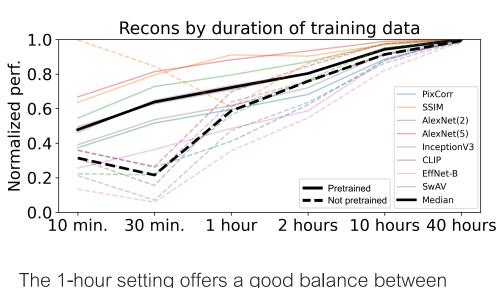
Unrefined SDXL unCLIP recon + predicted caption

Refined reconstruction

"Unrefined" reconstructions = pixel images output directly from SDXL unCLIP

> We observed unrefined reconstructions were SOTA but subjectively distorted. To improve image realism, we use image-to-image [4] with base SDXL, feeding unrefined recons alongside a MindEye2 predicted image caption.

Varying amt. of training data



The 1-hour setting offers a good balance between scan duration and reconstruction performance, with notable improvements from pretraining.

Ablations

Met	ME2	ME1	CLIP L	
Low-Level	PixCorr ↑	0.292	0.225	0.243
	SSIM ↑	0.386	0.380	0.371
	$Alex(2) \uparrow$	92.7%	87.3%	84.8%
	$Alex(5)$ \uparrow	97.6%	94.7%	93.7%
High-Level	Incep ↑	91.5%	88.9%	87.7%
	$CLIP \uparrow$	90.5%	86.2%	89.2%
	Eff↓	0.700	0.758	0.744
	$SwAV\downarrow$	0.393	0.430	0.427
Retrieval	Fwd ↑	97.4%	84.9%	89.6%
	Bwd ↑	95.1%	70.6%	82.8%

Ablations show importance of both shared-subject modeling and leveraging improved CLIP image space. ME1 = MindEye1 MLP instead of shared-subject linear mapping CLIP L = Mapping to CLIP-L instead of OpenCLIP bigG

- 1-hour generalization enables practical adoption.
- MindEye2 is limited to natural scene image distributions.
- Data easily becomes too noisy with slight movement or inattention to the task.
- Privacy: IRB approval and participant consent for data sharing was obtained. Medical data should be carefully protected and transparently used.