ResTran: A GNN Alternative to Learn A Graph with Features

Shota Saito*, Takanori Maehara**, Mark Herbster* * Dept of CS, UCL **Independent Researcher

paper

Proposed a GNN alternative learning framework for a graph with features.

Features

1. Represent vertex i as $\mathbf{v}_i := X L_h^{-1/2} \mathbf{e}_i$

$$X := (\mathbf{X}_1, \dots, \mathbf{X}_n)$$

$$\mathbf{X}_i: \text{ features at } i$$

$$\mathbf{e}_i: \text{ coordinate at } i$$

2. Train with any vector-based model incl. SVM or NN models

 $f = YourNiceVectorBasedModel({\mathbf{v}_i}_{i \in Train})$

Experiments

Typically pseudo-inverse costs $O(n^3)$ but well approximated by O(m)

Vertex Classification tasks

Heterophilous datasets

		Туре	cora	citeseer	pubmed	chameleon	squirrel	actor
	GCN	GNN	$\textbf{79.9} \pm \textbf{0.9}$	67.4 ± 1.1	83.8 ± 0.4	32.7 ± 2.0	23.5 ± 1.1	25.9 ± 0.9
	GAT	GNN	74.9 ± 4.2	67.6 ± 0.1	82.8 ± 0.2	32.8 ± 1.8	23.4 ± 1.3	26.4 ± 0.9
	SGC	GNN	79.3 ± 1.7	70.2 ± 0.8	67.9 ± 1.8	31.8 ± 1.8	23.5 ± 0.8	26.0 ± 0.8
	ResTran + LP ResTran + SVM	Non-NN Non-NN	$\begin{array}{c} 30.6\pm0.6\\ 49.1\pm5.7\end{array}$	$\begin{array}{c} 20.6\pm4.6\\ 45.5\pm6.7\end{array}$	$\begin{array}{c} 39.5 \pm 1.4 \\ 76.5 \pm 2.2 \end{array}$	$\begin{array}{c} 20.3\pm0.8\\ 33.6\pm5.8\end{array}$	$\begin{array}{c} 20.0\pm0.3\\ 31.9\pm0.9 \end{array}$	$\begin{array}{c} 22.3\pm2.8\\ 29.4\pm0.9\end{array}$
	ResTran + VAT	NN NN	77.6 ± 2.5	68.7 ± 1.1	82.8 ± 0.7	34.0 ± 1.4	27.7 ± 3.5	27.8 ± 1.2
	KesIran + AVAE	ININ	78.2 ± 1.8	71.7 ± 1.0	83.9 ± 0.7	40.7 ± 1.4	32.4 ± 0.8	29.5 ± 1.5
Graph Classification tasks								

	Туре	MUTAG	ENZYMES	NCI1	PROTEINS	BZR
GIN	GNN	89.4±5.3	46.3±3.6	78.5±0.7	$76.8{\pm}5.5$	88.8±4.1
ResTran + MLP	NN	89.5±3.7	45.7±4.0	77.5±2.4	78.4±3.7	89.8±3.2

Ours is better for heterophilous datasets even with non-NN methods (SVMs!)

Justification via Connections between spectral clustering and k-means

Featureless setting (where
$$X = I$$
)

 $\{V_{\ell}\}_{\ell \in [k]}$: a clustering result

k-means using effective resistance = k-means using ResTran

$$\operatorname{argmin}_{\{V_{\ell}\}_{\ell \in [k]}} \sum_{\ell \in [k]} \sum_{i,j \in V_{\ell}} \frac{r(i,j)}{|V_{\ell}|} = \operatorname{argmin}_{\{V_{\ell}\}_{\ell \in [k]}} \sum_{\ell \in [k]} \sum_{i \in V_{\ell}} \|\mathbf{v}_{i} - \mu_{\ell}\|_{2}^{2}$$

$$r(i,j) \text{ is an effective resistance and } r(i,j) = \|\mathbf{v}_{i} - \mathbf{v}_{i}\|_{2}^{2}$$

k-means using ResTran = Spectral Clustering

$$\operatorname{argmin}_{\{V_{\ell}\}_{\ell \in [k]}} \sum_{\ell \in [k]} \sum_{i \in V_{\ell}} \|\mathbf{v}_{i} - \boldsymbol{\mu}_{\ell}\|_{2}^{2} = \operatorname{argmin}_{\{V_{\ell}\}_{\ell \in [k]}} SC(\{V_{\ell}\}_{\ell \in [k]})$$

V_i is connected to spectral clustering

<u>Graph with Feature Setting</u>: We have more in the paper.