

Protein Representation Learning by Capturing Protein Sequence-Structure-Function Relationship

Eunji Ko^{*1}, Seul Lee^{*1}, Minseon Kim^{*1}, Sung Ju Hwang¹

¹KAIST

kosu7071@kaist.ac.kr

Figure 2. The overall framework of AMMA.

Introduction

- We are the first to propose utilizing the three core modalities for protein representation learning: sequence, structure, and function.
- We point out the **asymmetric relationship** between sequence, structure, and function of proteins and propose **AMMA**, a masked autoencoder framework that adopts a unified multi-modal encoder and asymmetric **decoders** to account for the asymmetric relationship.
- We experimentally demonstrate that AMMA is **highly** effective in learning protein representations and benefits **performance** on a variety of downstream protein-related tasks.

Figure 1. t-SNE visualization of the three modalities of proteins.

Experiments: Qualitative Results

Evaluate performance of our model on two standard downstream tasks.

Table 1. Performance on protein function annotation tasks.

Mathad	Modality		EC		GO-MF		GO-CC		GO-BP		Ava	Ava	
Method	Seq.	Str.	Func.	F _{max}	AUPR	F _{max}	AUPR	F _{max}	AUPR	F _{max}	AUPR	Avg. _{Fmax}	Avg. AUPR
ESM-1b (Rives et al., 2021)	 Image: A start of the start of			86.9	88.4	65.9	63.0	47.7	32.4	45.2	33.2	61.4	54.3
OntoProtein (Zhang et al., 2022)	\checkmark		\checkmark	84.1	85.4	63.1	60.3	44.1	30.0	43.6	28.4	58.7	51.0
GearNet (Zhang et al., 2023)		\checkmark		87.4	89.2	65.4	59.6	48.8	33.6	49.0	29.2	62.7	52.9
SaProt (Su et al., 2023)	\checkmark	\checkmark		88.8	85.5	68.8	58.2	41.2	20.6	45.1	23.8	61.0	47.0
ProtST (Xu et al., 2023)	\checkmark		\checkmark	87.8	89.4	66.1	64.4	48.8	36.4	48.0	32.8	62.7	<u>55.8</u>
AMMA-symmetric (ours)	 ✓ 	\checkmark	\checkmark	71.6	74.9	52.0	52.3	48.8	35.1	35.5	24.3	52.0	46.7
AMMA-contrastive (ours)	\checkmark	\checkmark	\checkmark	87.7	<u>89.5</u>	65.2	61.3	44.3	28.2	28.2	17.3	56.4	49.1
AMMA (ours)	✓	\checkmark	\checkmark	88.7	89.8	<u>67.3</u>	65.5	49.8	36.9	46.9	33.6	63.2	56.5

Experiments: Improving performance with unpaired data

Ι	Data	1	EC	GC	D-MF	Auguaga	
Paired	Unpaired	F _{max}	AUPR	F _{max}	AUPR	Average	
120k 120k	0k 50k	88.1 88.2	89.7 90.4	66.4 66.9	64.6 64.6	77.2 77.5	

Table 2. EC/GO results with extra unpaired data.

Experiments: Ablation studies and qualitative analysis

Effect of the **asymmetric decoders**

Figure 3. Visualization of highly attended residues in a functional context.

<u>Methodology</u>: Asymmetric Multimodal Masked Autoencoder (AMMA)

- We introduce **AMMA**, asymmetric multi-modal masked autoencoder.
- 1. Each modality data is encoded by a frozen pretrained uni-modal encoder.
- 2. The encoded features are then masked and integrated into a unified representations by a multi-modal encoder.
- 3. Each **asymmetric decoder** reconstructs the original feature for each modality.
- During decoding, the input latent features are asymmetrically passed to the decoders.
- This requires AMMA to encode structural and function information into sequence latent features, which allows AMMA to capture unique asymmetric sequencestructure-function relationships.

$$\begin{split} \mathcal{L}_{\texttt{seq}} &= \texttt{MSE}(\hat{X}_{\texttt{seq}}, X_{\texttt{seq}}'), \mathcal{L}_{\texttt{str}} = \texttt{MSE}(\hat{X}_{\texttt{str}}, X_{\texttt{str}}'), \mathcal{L}_{\texttt{func}} = \texttt{MSE}(\hat{X}_{\texttt{func}}, X_{\texttt{func}}'), \\ \mathcal{L} &= \mathcal{L}_{\texttt{seq}} + \mathcal{L}_{\texttt{str}} + \mathcal{L}_{\texttt{func}}. \end{split}$$

- AMMA (ours)
- AMMA-symmetric
- Comparison with **contrastive learning**

Figure 4. t-SNE visualization of three protein modalities

Effect of masking ratio \bullet

Ratio			1	EC	GC	D-MF	Average	
$lpha_{ t seq}$	$lpha_{ t str}$	$lpha_{ t func}$	F _{max}	AUPR	F _{max}	AUPR	Average	
1	1	1	84.6	87.2	66.4	64.8	75.8	
1	2	2	87.7	89.8	66.4	64.2	77.0	
2	1	1	73.0	75.9	65.1	63.2	69.3	
2	1	2	86.7	89.2	65.9	64.7	76.6	
2	2	1	87.9	89.5	52.4	53.6	70.9	

Table 3. Experimental results with different α .