A mechanistically interpretable neural-network architecture for discovery of regulatory genomics

Alex M. Tseng, Gökcen Eraslan, Nathaniel Diamant, Tommaso Biancalani, Gabriele Scalia

> MLGenX 11 May 2024

Introduction to regulatory genomics

Motifs endow function through a complex and system-dependent syntax and grammar

Understanding how proteins bind to DNA is important for:

Waddington, 1957 Image by Svenska Mässan, distributed under CC BY 2.0

BioIcons

Disease diagnosis Cell reprogramming Therapy design

A major challenge: it is hard to extract motifs and their syntax from experimental data

ATTTATGAGAAACAGTTAAACTTAATACTGACTTATAACC CAAGTATGACCGAGTGCACGGTTCACGTAGATGTTGCCAC AATTCCAACTGTTTGTGAGGGACGCCCTGTCCGCCGCTCG TCCGCTCCATAAGGTAGGGGGACCAGACTGGCTGATACTC AGTTGGCGGCCGATCGCCTCGTGATGCGCCCGACCCTCTA

...

CGGCCTAACTGGCTTTCAAGGAACCTGGCAAGTGTAACTA GGGCCGGCGCATGCATAGTTGAACATAATGGAATTGCAAT GGGTTCGCGATTGATGACATGCTTATTCACACTCGTCACA AATGGAATTCTGAGATACGTTCGTAGGCCATCTTTACTGT CCAAAAGATTGATGCGTTCAGAACATACACTGAAGGGTAA

"active" sequences "inactive" sequences

GGTTCGACAAATATTTTCCATGGACTGGAAATTGCCGTAT ACCGGCTAGTCTCGTTGCCAATCCGGGCCACCTTGCGCAG CATTAGATTACCGTGCAATCCTGTCTGTCCGTTATTTTAT GACAACTCCAGTGTAGTAGGTGACACCGAATAAGCCGAAG AGCCTCGAATAAAGGTTTTGACTCTCCATGGTATAGAGAG

...

TTGCTTTATGGTACATTTTAAGGCAAGATTACTGTCTTCC CGATCCGGGCTTCTTAGTATTCGCCCGGCCGCGCAGTAAC ATCAGAACCCATCGGAGGTTGTAGGTCGCCTTAACATATT AGAATAGGTGTCAATGGCGATTTAAGAGACGCCGGCGACA TGATTTTTGCATCACTAACCGTCTGCCCAGTGAGTCAGAG

What are the motifs (and syntax) which distinguish the "active" sequences from the "inactive" sequences?

Learning regulatory genomics with neural networks

determined molecular label There are many flavors of architectures, all tweaks on a classic CNN

Why convolutions?

Deep neural networks have become regulatory-biology experts

Deep learning in regulatory genomics

Neural networks and sequence-to-activity models

Deep neural network (DNN) models have emerged as the leading type of predictive model in regulatory genomics ^{14.6}. For this Review, we focus on sequence-to-activity models based on neural networks. These models take a putative regulatory DNA sequence (usually 100-10,000 bp) as input and aim to predict some dynamic property (that is, cell or context specificity) of the sequence's activity. For example, a model may predict whether a given TF binds to that sequence in a given cell type as measured by a chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiment $\frac{78.910}{2}$. Other common prediction targets include chromatin accessibility^{11,12}, RNA binding¹³, gene expression^{14,15,16,17}, splicing^{18,19} or aspects of chromatin 3D organization²⁰.

Identifying motifs from a NN by interpreting filters

Problem: a single filter's weights don't always encode motifs

True motifs Motifs encoded by first-layer filters

> State-of-the-art accuracy, **dreadful** interpretability Motifs are distributed across filters

Identifying motifs from a NN by integrating through the whole NN

Problem: importance scores are noisy and unstable

Bad: hard to pick out what the motifs are

Worse: hard to pick out where the motifs are

Even worse: the two methods disagree even on the *sign* of importance

The central limitation: expressivity vs interpretability

- Filters do not learn biologically interpretable units
- Importance scores are extremely suboptimal and require enormous post hoc processing

An alternative solution: mechanistic interpretability

- Carefully limit the expressivity of the architecture so the *only* solutions are directly interpretable (while retaining performance)
- In a *mechanistically interpretable* architecture, learned decisions are directly encoded in the weights and activations

Analysis of Regulatory Genomics with a Mechanistically Interpretable Neural Network (ARGMINN)

A mechanistically interpretable architecture for regulatory DNA

Motif-scanning module

Filters

TTTATTGGTTGTGAACCCCTATAAC

If both neurons fire, the boxed weights should not both be non-zero

A single convolutional layer learns all motifs.

Unique regularization to ensure a one-to-one mapping between motifs and filters.

Syntax-building module

Attention with *single* query from *explicit* memory stream (modified each layer). Key/value vectors always directly derived from the original motif-scanner activations. Additional attention layers learn 2^{nd} -order, 3^{rd} -order (etc.) interactions.

Extracting motifs from ARGMINN

TTTATTGGTTGTGAACCCCTATAAC

Filters One-to-one mapping between filters and relevant motifs

Discovered motifs

Interpreting filters directly in a traditional model leads to non-motif patterns: Information is distributed across the model

ARGMINN finds high-quality, relevant, non-redundant motifs

Clustering importance scores leads to redundancy and non-motif patterns: Fundamental limitations in importance scores and in clustering

Extracting motif instances and syntax with ARGMINN

Motif instances and syntax are revealed with a single forward pass

Summary

- ARGMINN: a mechanistically interpretable neural network for regulatory genomics
- ARGMINN encodes biologically relevant motifs in its filters in a one-toone fashion
- ARGMINN reveals motif instances and syntax with a single forward pass
- Through improved interpretability, the quality of motifs and their instances surpasses current state-of-the-art methods

Acknowledgments

Thanks for listening!

tseng.alex@gene.com

A Member of the Roche Group