Generalizing Reasoning Problems to Longer Lengths

Changnan Xiao ¹ and Bing Liu ²

- ¹ ChangnXX.github.io, changnanxiao@gmail.com
- ² University of Illinois Chicago, liub@uic.edu

Length generalization problem in learning to reason

- Length Generalization (LG) (or length extrapolation):
 - □ when trained on reasoning problems of smaller lengths/sizes, e.g., 345 + 67,
 - □ the model struggles with problems of longer lengths, e.g., 1234 + 56789.
- A popular solution to improve reasoning is to use Chain of Thought (CoT) (Wei et al., 2022),
 - CoT: providing intermediate reasoning steps
 - However, Dziri et al. (2023) and others have shown that even with detailed CoT steps, the learned models still fail to generalize.

Three main contributions

- Present a theorem to identify the root cause of LG.
 - It explains why existing approaches are insufficient.
- 2. Propose a sufficient condition for LG, (n, r)-consistency
- 3. Validate the theory by learning math reasoning tasks like arithmetic, parity, addition, multiplication, and division to achieve LG.

Root cause of LG

- We use problem length as the dimension of a function
- Theorem: for a function g_N of a lower dimension N, there exist infinitely many continuations $f_{N'}$ of a higher dimension N' (N' > N) that can achieve the effect of g_N .

Theorem 3.1 Define V as a metric space. Denote $0 \in V$ to be the empty token. For $g_N : V^N \to [-1,1], \forall N' > N$, there exists infinitely many continuations $f_{N'}: V^{N'} \to [-1,1]$ s.t. $f_{N'}(v_1,\ldots,v_N,0,\ldots,0) = g_N(v_1,\ldots,v_N)$.

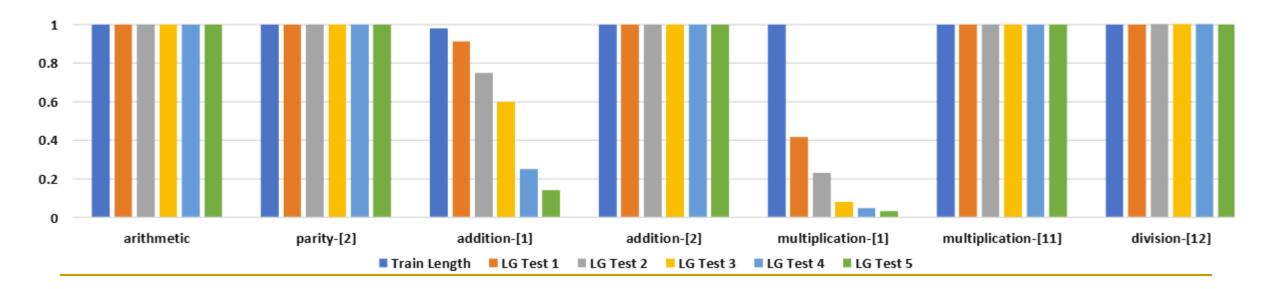
Implication: Sufficient bias needs to be introduced to the problem s.t. with the bias, $f_{N'}$ is made equal to $g_{N'}$ uniquely.

Sufficient condition for LG: (n, r)-consistency

- (n, r) defines a context in a CoT step with n r-length intervals (subsequences) in the sequence (input or output expression)
- Consistency:
 - (1) the context is independent of the distances between any pair of intervals
 - (2) the same/consistent output should be predicted if the input of a CoT step of any instance of the problem contains the context.
- Prove: if a reasoning problem's CoT scheme is (n, r)-consistent, LG can be achieved with a Transformer.

Experiment settings and results

	Train Length	LG Test 1	LG Test 2	LG Test 3	LG Test 4	LG Test 5
arithmetic in F_7	$L \in [3, 20)$	$L \in [3, 30)$	$L \in [3, 40)$	$L \in [3, 50)$	$L \in [3, 60)$	$L \in [3, 100)$
parity-[2]	$L \in [1,8)$	$L \in [1, 30)$	$L \in [1, 40)$	$L \in [1, 50)$	$L \in [1, 60)$	$L \in [1, 100)$
addition-[1/2]	$L \in [1, 8)$	$L \in [1,9)$	$L \in [1, 10)$	$L \in [1,11)$	$L \in [1, 16)$	$L \in [1,21)$
multiplication-[1/11]	$L \in [1,6)$	$L \in [1,7)$	$L \in [1, 8)$	$L \in [1,9)$	$L \in [1, 10)$	$L \in [1, 11)$
division-[12]	$L \in [1,6)$	$L \in [1,7)$	$L \in [1,8)$	$L \in [1,9)$	$L \in [1, 10)$	$L \in [1, 11)$



Thank You

If you are interested in the topic, please read our paper.

Three main contributions

- Present a theorem to identify the root cause of LG.
 - It explains why existing approaches are insufficient.
- Propose a sufficient condition, (n, r)-consistency, for LG,
 - define a problem class whose problems can have CoT schemes satisfying the (n, r)-consistency condition.
 - prove that LG can be achieved with a Transformer for this class of problems.
- 3. Validate the theory by learning math reasoning tasks like arithmetic, parity, addition, multiplication, and division to achieve LG.

(n, r)-consistency using addition as an example

- Addition using a 1-dimensional CoT scheme, called addition-[1].
- **CoT1**: input $S^0 = {123+567} = {90}$ and output $S^1 = {123+567} = {90}$,
 - where ? indicates 0 is carried and \$ indicates 1 is carried.
 - □ An example (3, 3) context ('_\$0': '123', '567') in S⁰.
 - We want to predict the value for the position of \$ in S¹, i.e., 9.
- **CoT2**: $S^0 = {}^{1}2342 + {}^{4}5678 = {}^{\$}0$ and $S^1 = {}^{1}2342 + {}^{4}5678 = {}^{\$}20$
 - ('_\$0': '123', '567') also exists in this CoT
- Not (3, 3)-consistent because for the same context, the predictions are different, CoT1 is 9 but CoT2 is 2.

An (n, r)-consistency example (cont.)

- We now use a 2-dimensional CoT scheme, addition-[2]
 - Adding tags as the second dimension, indicating the positions involved in the next computation step
 - CoT1: $123 + 567 = \$0 \Rightarrow \begin{pmatrix} 123 + 567 = \$0 \\ I & J & K \end{pmatrix}, and$ CoT2: $12342 + 45678 = \$0 \Rightarrow \begin{pmatrix} 12342 + 45678 = \$0 \\ I & J & K \end{pmatrix},$
 - □ This CoT scheme is (3, 3)-consistent because the same context in any problem instance will give the same prediction for the intended position, e.g., \$. $\begin{pmatrix} \$0 \\ I \end{pmatrix}$