Probablistic Learning To Defer

Cuong Nguyen¹ Thanh-Toan Do² Gustavo Carneiro¹ April 25th, 2025

¹Centre for Vision, Speech and Signal Processing, University of Surrey, UK

²Department of Data Science and AI, Monash University, Australia

Introduction

Introduction

Introduction

Learning to defer (L2D) aims to leverage:

- high reliability of human, and
- high *efficiency* of machine learning models.

Modelling

L2D is a mixture of:

Modelling

L2D is a mixture of:

• *M* human experts, and

Modelling

L2D is a mixture of:

- M human experts, and
- a machine learning model (i.e., classifier).

Modelling

L2D is a mixture of:

- M human experts, and
- a machine learning model (i.e., classifier).
- \rightarrow latent variable model: expert selection \boldsymbol{z}

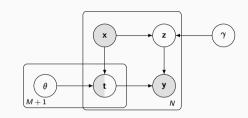


Figure 1: Graphical model of L2D.

Modelling

L2D is a mixture of:

- M human experts, and
- a machine learning model (i.e., classifier).
- \rightarrow latent variable model: expert selection **z**

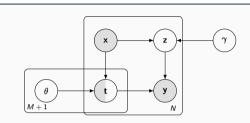


Figure 1: Graphical model of L2D.

Objective

$$\max_{\gamma,\theta_{M+1}} \frac{1}{N} \sum_{i=1}^{N} \ln \Pr\left(\mathbf{y}_{i}, \prod_{m=1}^{M} \mathbf{t}_{i}^{(m)} \middle| \mathbf{x}_{i}, \gamma, \prod_{m=1}^{M+1} \theta_{m}\right).$$
(1)

Modelling

L2D is a mixture of:

- M human experts, and
- a machine learning model (i.e., classifier).
- \rightarrow latent variable model: expert selection **z**

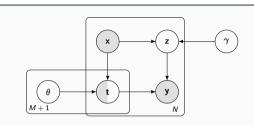


Figure 1: Graphical model of L2D.

Objective

$$\left[\max_{\gamma,\theta_{M+1}} \frac{1}{N} \sum_{i=1}^{N} \ln \Pr \left(\mathbf{y}_{i}, \prod_{m=1}^{M} \mathbf{t}_{i}^{(m)} \middle| \mathbf{x}_{i}, \gamma, \prod_{m=1}^{M+1} \theta_{m} \right). \right]$$
 (1)

Learning is performed via the Expectation - Maximisation algorithm

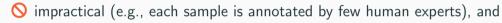
Learning to defer has limitations

Learning to defer has limitations

requires all human experts must annotate every training sample

Learning to defer has limitations

requires all human experts must annotate every training sample



Learning to defer has limitations

requires all human experts must annotate every training sample

impractical (e.g., each sample is annotated by few human experts), and

3

Learning to defer has limitations

requires all human experts must annotate every training sample

impractical (e.g., each sample is annotated by few human experts), and

scostly, time-consuming, and even infeasible (e.g., radiology),

most likely selects the best human expert all the time

3

Learning to defer has limitations

impractical (e.g., each sample is annotated by few human experts), and

sostly, time-consuming, and even infeasible (e.g., radiology),

most likely selects the best human expert all the time

unfair workload assignment, and

Learning to defer has limitations

impractical (e.g., each sample is annotated by few human experts), and

scostly, time-consuming, and even infeasible (e.g., radiology),

 $ilde{m lack}$ most likely selects the $\emph{best human expert}$ all the time

unfair workload assignment, and

 \bigotimes fatigue, burnout \rightarrow misdiagnosis.

3

Relax the strong assumption in standard L2D

Relax the strong assumption in standard L2D

Each sample must be annotated by **all** human experts.

Relax the strong assumption in standard L2D

Each sample must be annotated by all human experts.

Relax the strong assumption in standard L2D

Each sample must be annotated by **all** human experts.

Each sample is annotated by **some** (or none) human experts.

Relax the strong assumption in standard L2D

Each sample must be annotated by **all** human experts.

 \downarrow

Each sample is annotated by **some** (or none) human experts.

o additional latent variables (i.e., missing annotations $\mathbf{t}^{(j)}, orall j \in \mathcal{D}^{\mathsf{unobs.}})$

Relax the strong assumption in standard L2D

Each sample must be annotated by all human experts.

 \downarrow

Each sample is annotated by **some** (or none) human experts.

o additional latent variables (i.e., missing annotations $\mathbf{t}^{(j)}, orall j \in \mathcal{D}^{\mathsf{unobs.}})$

Parameter inference is performed through the *variational* EM algorithm:

Relax the strong assumption in standard L2D

Each sample must be annotated by **all** human experts.

 \downarrow

Each sample is annotated by **some** (or none) human experts.

o additional latent variables (i.e., missing annotations $\mathbf{t}^{(j)}, orall j \in \mathcal{D}^{\mathsf{unobs.}})$

Parameter inference is performed through the *variational* EM algorithm:

E-step: approximate the posterior $q(\mathbf{z},\prod_{j\in\mathcal{D}^{\mathsf{unobs.}}}\mathbf{t}^{(j)})$ via variational inference

Relax the strong assumption in standard L2D

Each sample must be annotated by **all** human experts.

 \downarrow

Each sample is annotated by **some** (or none) human experts.

o additional latent variables (i.e., missing annotations $\mathbf{t}^{(j)}, orall j \in \mathcal{D}^{\mathsf{unobs.}})$

Parameter inference is performed through the variational EM algorithm:

E-step: approximate the posterior $q(\mathbf{z}, \prod_{j \in \mathcal{D}^{\text{unobs.}}} \mathbf{t}^{(j)})$ via variational inference *M-step*: maximise the "completed"-data log-likelihood w.r.t. γ and $\{\theta_m\}_{m=1}^{M+1}$.

Probabilistic L2D - Control workload assignment

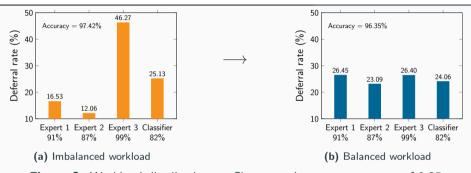


Figure 2: Workload distribution on Chaoyang dataset at coverage of 0.25.

Probabilistic L2D - Control workload assignment

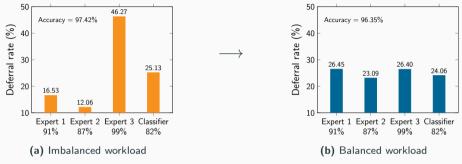


Figure 2: Workload distribution on Chaoyang dataset at coverage of 0.25.

An additional E-step is introduced to calculate the constrained posterior:

$$\widetilde{q}_i^* = \operatorname*{argmin}_{\widetilde{q}} \mathsf{KL}\left[\widetilde{q}(\mathbf{z}_i) \| q^*(\mathbf{z}_i)\right], \forall i \in \{1, \dots, N\} \quad \mathsf{s.t.:} \ \ arepsilon_{\mathsf{I}} \preceq \dfrac{1}{N} \sum_{i=1}^N \widetilde{q}(\mathbf{z}_i) \preceq arepsilon_{\mathsf{u}},$$

where q^* and \widetilde{q} denote the unconstrained and constrained posteriors of \mathbf{z} .

Evaluation - Coverage - accuracy curve on Chaoyang

Evaluation - Coverage - accuracy curve on Chaoyang

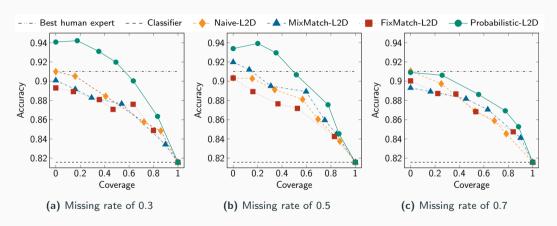


Figure 3: Comparison of coverage - accuracy curves between different L2D methods on Chaoyang with 2 human experts, each at a different missing rate.

Evaluation - Controllable workload

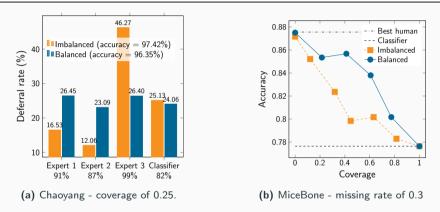


Figure 4: ((a)) shows comparisons of two different workload constraints on Chaoyang dataset with 50% missing annotations per expert, where in the *imbalanced* setting, $\varepsilon_I=0$ and $\varepsilon_u=1$ for each human expert, while in the *balanced* setting, $\varepsilon_I\approx\varepsilon u=(1-\mathrm{coverage})/M$ for each human expert, and ((b)) coverage - accuracy curve on MiceBone at 30% missing rate.

Propose and develop the probabilistic L2D, which

Propose and develop the probabilistic L2D, which

• addresses the missing annotations, and

Propose and develop the probabilistic L2D, which

- addresses the missing annotations, and
- manages the workload between experts.

Propose and develop the probabilistic L2D, which

- addresses the missing annotations, and
- manages the workload between experts.

Limitations

Propose and develop the probabilistic L2D, which

- addresses the missing annotations, and
- manages the workload between experts.

Limitations

• Scalability w.r.t. the number of human experts

Propose and develop the probabilistic L2D, which

- addresses the missing annotations, and
- manages the workload between experts.

Limitations

- Scalability w.r.t. the number of human experts
- Dynamic expert's performance