Integral Performance Approximation for Continuous-Time Reinforcement Learning Control

ICLR 2025

Brent A. Wallace, Jennie Si

School of Electrical, Computing and Energy Engineering Arizona State University April 24-26, 2025

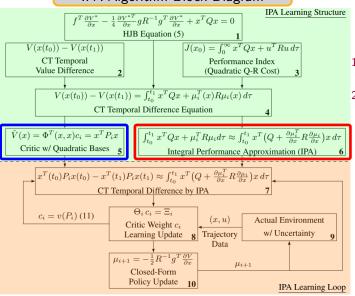
Motivation:

- Discrete-time (DT) RL theoretical and applications successes
 - Excellent convergence, optimality, closed-loop stability guarantees
 - Successfully applied to many real-world systems
- Prevalent CT-RL Adaptive Dynamic Programming (ADP) [1, 2, 3, 4]:
 - Substantial theoretical results: convergence, optimality, closed-loop stability
 - Few results on controller synthesis, thus no demonstrated applications [5]
- New CT-RL fitted value iteration (FVI) methods in deep RL (DRL) [6, 7]:
 - Great empirical promises: Results exceed ADP designs
 - But lack ADP's theoretical guarantees
 - And inherit high data/computational complexity from DRL in DT

Contributions: A new SOTA CT-RL method (IPA) in the following context:

- Leveraging affine nonlinear model, quadratic cost, and Kleinman control structures for great data efficiency and robust control performance
- 2. Theoretical guarantees of convergence, optimality, closed-loop stability
- 3. Comprehensive evaluations, including challenging hypersonic vehicle (HSV)

IPA Algorithm Block Diagram

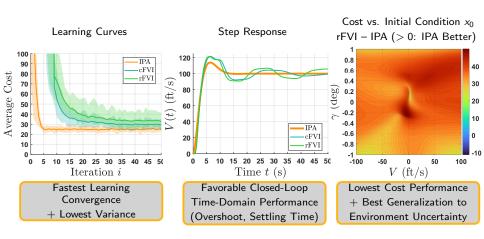


Use of:

- Integral Performance Approximation (IPA)
- 2. Quadratic bases

enable IPA to take advantage of Kleinman control structures for:

- High data efficiency
- Improved excitation/exploration
- Well-behaved system/learning responses



IPA Enables Efficient Learning with Well-Behaved Responses on Significant HSV Application

Algorithm Time	/Data	/Compi	ıtational	Com	plexity	on	Hypersonic	Vehicle

Parameter	IPA	FVIs	Ratio FVIs/IPA	
# Trajectory Data Samples	30	173,000,000	5,800,000	
# Data Episodes	1	5,250,000	5,250,000	
Average Training Time (s)	2.75	4,600	1,673	
# Algorithm Iterations i	10	50	5	

- Table: SOTA FVIs exhibit <u>significantly greater</u> time/data/computational complexity than IPA
 - Training deep networks ⇒ greater complexity
- Note: Despite great FVI successes illustrated here, current FVI data complexity not practical for training in mission-critical flight control applications (e.g., HSV)

IPA's use of Integral Performance Approximation + Quadratic Bases + Kleinman Structures Significantly Lowers Complexity

IPA vs. ADP:

- Both have comprehensive theoretical guarantees
- IPA achieves synthesis and substantial learning generalization

IPA vs. Deep RL FVIs:

- IPA cost, approximation, and closed-loop performance meets and often exceeds FVIs
- Reductions in data complexity of 6 orders of magnitude

- D. Vrabie and F. L. Lewis, "Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems," Neur. Net., vol. 22, no. 3, pp. 237–246, 2009.
- [2] K. G. Vamvoudakis and F. L. Lewis, "Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem," *Automatica*, vol. 46, no. 5, pp. 878–888, 2010.
- [3] Y. Jiang and Z.-P. Jiang, "Robust adaptive dynamic programming and feedback stabilization of nonlinear systems," IEEE TNNLS, vol. 25, no. 5, pp. 882–893, Jan. 2014.
- [4] T. Bian and Z.-P. Jiang, "Reinforcement learning and adaptive optimal control for continuous-time nonlinear systems: A value iteration approach," *IEEE TNNLS*, vol. 33, no. 7, pp. 2781–2790, Jul. 2022.
- [5] B. A. Wallace and J. Si, "Continuous-time reinforcement learning control: A review of theoretical results, insights on performance, and needs for new designs," *IEEE TNNLS*, Feb. 2023.
- [6] M. Lutter, S. Mannor, J. Peters, D. Fox, and A. Garg, "Value iteration in continuous actions, states and time," in Proc. 38th Int. Conf. Mach. Learn. (ICML), vol. 139, Jul. 2021, pp. 7224–7234.
- [7] M. Lutter et al., "Continuous-time fitted value iteration for robust policies," IEEE Trans. Patt. Anal. Mach. Intel., vol. 45, no. 5, pp. 5534–5548, May 2023.