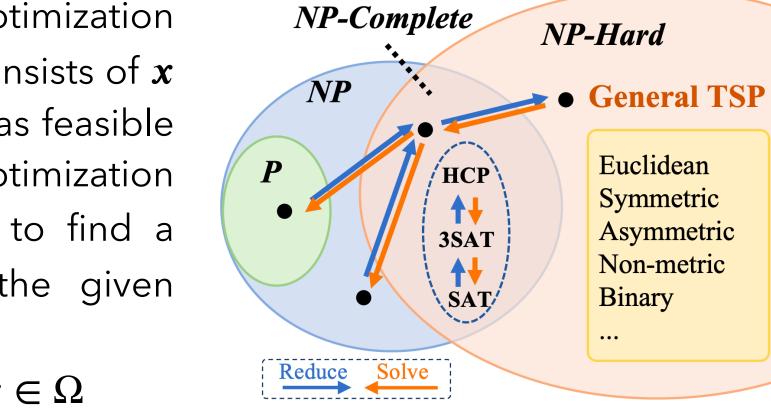
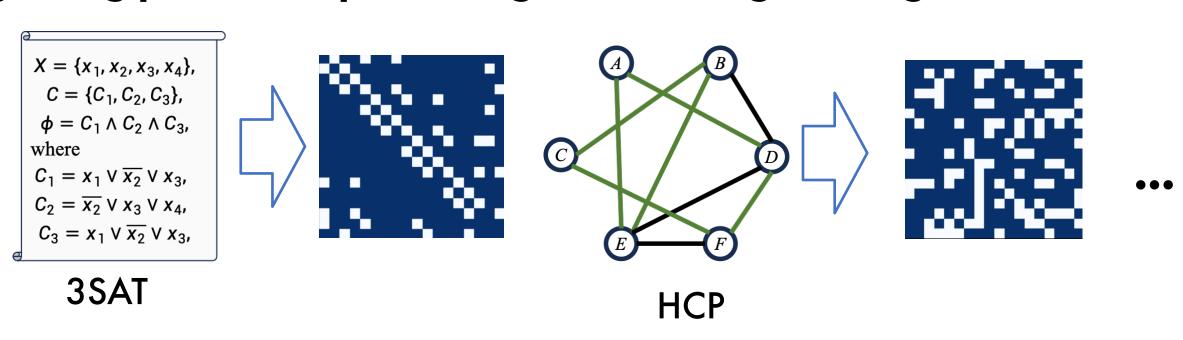
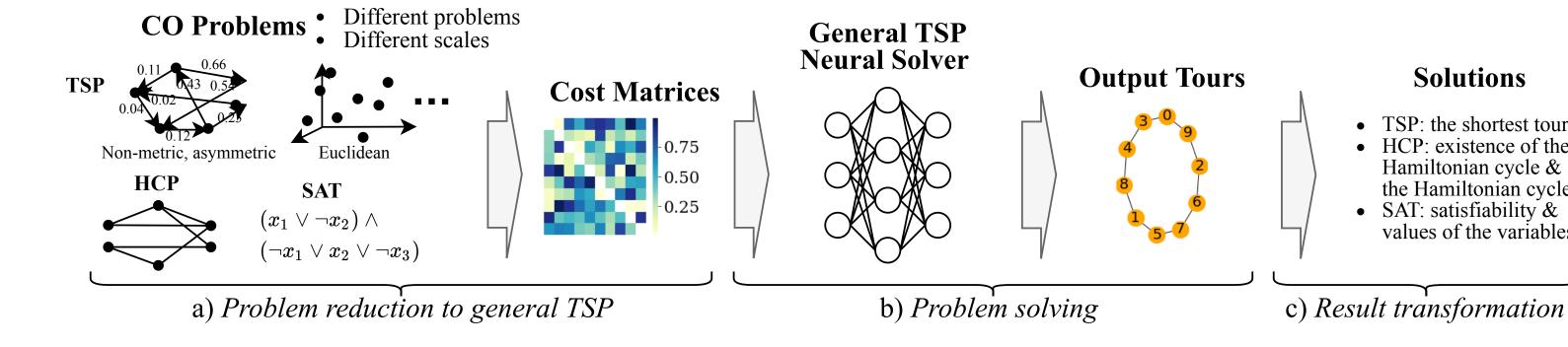
UniCO: On Unified Combinatorial Optimization via Problem Reduction to Matrix-Encoded General TSP



Unified Representation through Problem

Let $\mathbf{x} \in \{0, 1\}^N$ denote the optimization variable. The feasible set Ω consists of xsatisfying specific constraints as feasible solutions. A combinatorial optimization problem on graph $\it G$ aims to find a feasible x that minimize the given objective function:


Reduction to General TSP


Wenzheng Pan*, Hao Xiong*, Jiale Ma, Wentao Zhao, Yang Li, Junchi Yan

 $\min_{\mathbf{x} \in \{0, 1\}^N} f(\mathbf{x}; \mathbf{G}) \quad s.t. \quad \mathbf{x} \in \Omega$

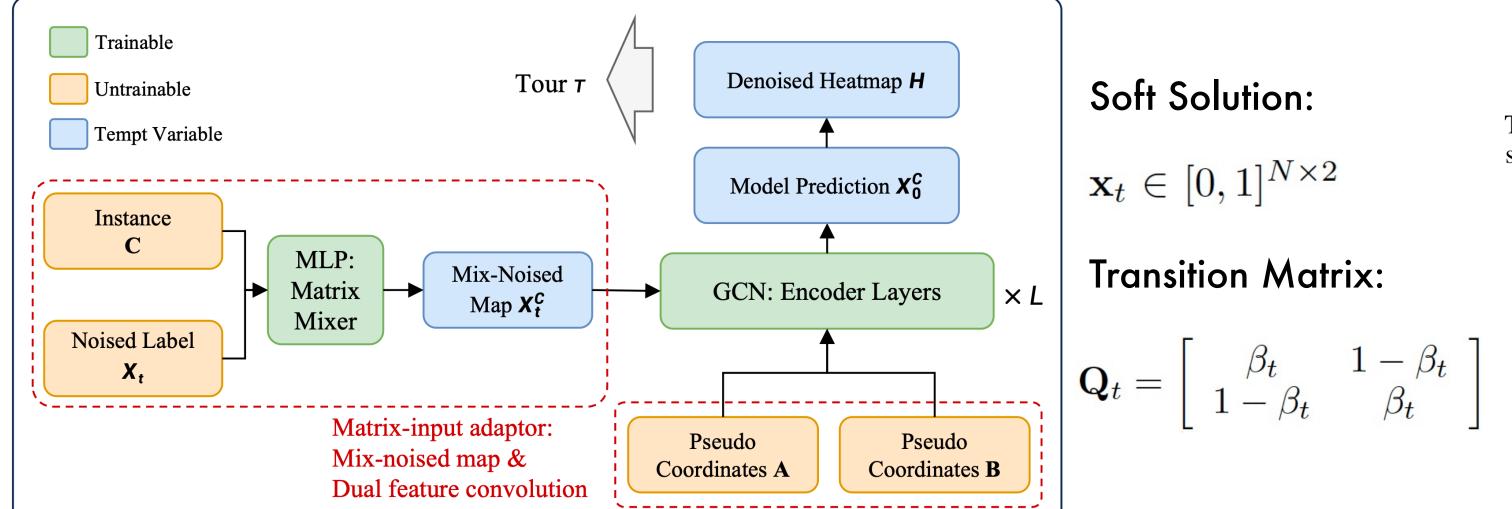
Various neural solvers have been devised for combinatorial optimization (CO), which are often tailored for specific problem types, e.g. TSP, HCP and SAT, etc. Yet, it remains an open question how to achieve universality regarding problem representing and learning with a general framework.

Unified Learning Framework for Matrix-Encoded **General TSP**

- We conceptualize **UniCO**, namely <u>Unified Combinatorial Optimization learning</u> framework, leveraging the rich expressivity of general TSP with arbitrary positive-valued matrix for unified representation of multiple CO problems (where reducible). We also construct standard datasets benchmarking the under-explored capacity of the general TSP world accordingly.
- We propose MatPOENet, namely Matrix encoding Network with Pseudo Onehot Embedding, a reinforced Transformer-based model which utilizes a novel size-agnostic node embedding to aid instance input, thereby significantly improving model scalability and performance of general TSP.
- We propose MatDIFFNet, namely Matrix encoding Diffusion Network, a supervised diffusion-based model which leverages a novel mix-noised reference map module, thus extending the promising ability of generative model for Euclidean TSP solving to matrix-formulated general TSP.
- We instantiate UniCO with the above two proposed neural backbones and one more existing method, and conduct experiments on general TSP with four types of CO problem distributions, i.e., ATSP, 2DTSP, DHCP, and 3SAT. Experiments show that measuring either the average TSP tour length or the average rate that solvers find optimal solutions for decisive tasks.

Overview: To instantiate the UniCO framework, we propose two models 1) MatPOENet (Graph Transformer + RL), improved upon MatNet to adapt to arbitrary-size TSP via our designed Pseudo One-hot Embedding (POE) as initial node feature with positional information; and 2) MatDIFFNet (Graph Diffusion + SL), leveraging the promising diffusion modeling for CO solving and combining distance matrix with noised solution to tackle ATSP.

Shanghai Jiao Tong University


UniCO-MatPOENet Reinforcement Learning: Inf Mask Pseudo One-hot Embedding: Instance → Mix-Score Attention Trainable Untrainable Embedding Tempt Variable Scale-free initializer: POE

b) Re-permutation

UniCO-MatDIFFNet

a) Initial Distance Matrix

Rough Solver

Calculate POE Value

c) POE Matrix

The noising process: $q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \prod_{t=1}^T \mathrm{Cat}(\mathbf{x}_t; \mathbf{p} = \mathbf{x}_{t-1}\mathbf{Q}_t)$ The denoising process: $p_{\theta}(\mathbf{x}_{0:T}|G) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, G)$

Mix-noised reference map: $\mathbf{x}_t^{\mathbf{C}} = W_{\text{mix2}} \left(\text{ReLU} \left(W_{\text{mix1}}(M) \right) \right)$

$$\begin{aligned} & \text{Dual feature updates for ATSP:} \\ & x_{A,i}^{l+1} = x_{A,i}^{l} + \text{ReLU}(\text{BN}(W_{A,1}^{l}x_{A,i}^{l} + \sum_{j \sim i} G_{ij}^{l} \odot (W_{A,2}^{l}x_{A,j}^{l} + W_{B,2}^{l}x_{B,j}^{l}))), \\ & x_{B,i}^{l+1} = x_{B,i}^{l} + \text{ReLU}(\text{BN}(W_{B,1}^{l}x_{B,i}^{l} + \sum_{j \sim i} G_{ij}^{l} \odot (W_{A,2}^{l}x_{A,j}^{l} + W_{B,2}^{l}x_{B,j}^{l})^{\top})), \\ & e_{ij}^{l+1} = e_{ij}^{l} + \text{ReLU}(\text{BN}(W_{3}^{l}e_{ij}^{l} + W_{A,4}^{l}x_{A,i}^{l} + W_{B,4}^{l}x_{B,j}^{l})) + W_{5}^{l}(\text{ReLU}(t^{0})), \\ & G_{A,ij}^{l} = \frac{\sigma(e_{ij}^{l})}{\sum_{ij' \geq ij} \sigma(e_{ij'}^{l}) + \epsilon}, \ G_{B,ij}^{l} = \frac{\sigma((e_{ij}^{l})^{\top})}{\sum_{ij' \geq ij} \sigma((e_{ij'}^{l})^{\top}) + \epsilon}, \end{aligned}$$

Experiments

a. Overall Performance

Table 2: Main experimental results. Reported data for ATSP and 2DTSP are tour length. "Single": models trained and tested on each problem respectively. "Mixed": unified models trained with a mixture of 4 tasks on each scale. Asterisked (*): a unified model trained with a mixture of 4 tasks and 3 scales. **Bold**: the best result of neural solvers. <u>Underlined</u>: the reference results for computing the optimality gap. Red / blue boxes: ours that outperform LKH with 10K/500 trials respectively. Time: the average time (seconds) per instance solving over each line, with batch size set to 1.

	Methods	Train Data	ATSP↓	2DTSP↓	DHCP ((L↓, FR↑)	3SAT (L↓, FR↑)	∥ Avg. L↓	Avg. Gap↓	Avg. FR↑	Time
Scale: $N \approx 20$	Gurobi LKH (10000) LKH (500) Nearest Neighbor Farthest Insertion	- - - -	1.5349 1.5349 1.5349 2.0069 1.7070	3.8347 3.8347 3.8347 4.5021 3.9695	0.0000 0.0008 0.0056 3.8556 3.3136	100.00% 99.92% 99.44% 0.48% 1.76%	0.0000 0.0000 0.0000 3.0504 4.8816	100.00% 100.00% 100.00% 0.32% 0.00%	1.3424 1.3426 1.3438 3.3428 3.4679	0.01% 0.11% 149.02% 158.34%	100.00% 99.96% 99.72% 0.40% 0.88%	0.135 0.327 0.038 0.000 0.000
	MatNet MatNet MatNet-8x DIMES DIMES-AS(100)	ATSP Mixed Mixed Mixed Mixed	1.5871 1.6359 1.5645 2.2335 1.6790	4.2612 3.9114 3.8478 4.1696 3.9092	2.9608 0.9740 0.1936 2.9448 0.4596	1.12% 27.60% 80.92% 2.67% 60.12%	3.4772 3.4656 1.6272 2.6660 0.2828	0.56% 11.04% 1.36% 2.12% 77.12%	3.0716 2.4967 1.8083 3.0035 1.5826	128.82% 85.99% 34.71% 123.74% 17.90%	0.84% 19.32% 41.14% 2.39% 68.62%	0.005 0.005 0.037 0.035 0.522
	MatPOENet MatPOENet-8x MatPOENet*-8x	Mixed Mixed Mixed	1.6445 1.5695 1.5506	3.8643 3.8389 3.8372	0.8676 0.1760 0.0556	32.60% 82.68% 94.44 %	0.4540 0.0112 0.0008	61.88% 98.88% 99.92 %	1.7076 1.3989 1.3610	27.21% 4.21% 1.39%	47.24% 90.78% 97.18%	0.006 0.043 0.043
	Gurobi LKH (10000) LKH (500) Nearest Neighbor Farthest Insertion	- - - -	1.5545 1.5548 1.5557 2.0945 1.8387	5.6952 5.6953 5.6964 6.9977 6.0998	0.0000 0.0000 0.0000 5.1120 4.0224	100.00% 100.00% 100.00% 0.00% 5.28%	0.0000 0.2784 0.4796 5.9872 10.3964	100.00% 74.80% 61.80% 0.00% 0.00%	1.8124 1.8821 1.9329 5.0548 5.5893	3.85% 6.65% 178.90% 208.39%	100.00% 87.40% 80.90% 0.00% 2.64%	0.296 0.513 0.059 0.000 0.001
le: $N \approx 50$	MatNet MatNet MatNet-8x GLOP DIMES DIMES	ATSP Mixed Mixed Single Mixed Mixed	1.5753 1.8098 1.7340 1.8885 2.3341 1.6920	7.3618 6.0000 5.8664 6.6499 6.6271 5.9447	1.4856 0.9288 0.3056 3.7244 3.1788 0.5908	11.80% 30.84% 71.52% 0.84% 1.56% 46.04%	8.4020 1.1900 0.2992 4.9816 5.3656 1.5830	0.00% 30.52% 73.08% 0.76% 0.12% 20.44%	4.7062 2.4821 2.0513 4.3111 4.3764 2.4528	159.67% 36.95% 13.18% 137.87% 141.47% 35.33%	5.90% 30.68% 72.30% 0.80% 0.84% 33.24%	0.007 0.007 0.064 0.115 0.055 2.016
Scale:	MatPOENet-8x MatPOENet MatPOENet-8x MatPOENet*-8x	Single Mixed Mixed Mixed	1.5643 1.6881 1.6417 1.6285	5.7042 5.7694 5.7283 5.7575	0.0652 0.1444 0.0172 0.0280	93.52% 86.20% 98.28% 97.20%	0.1888 1.3644 0.2456 0.1172	81.72% 27.08% 77.60% 88.44%	1.8806 2.2416 1.9082 1.8828	3.76% 23.68% 5.29% 3.88%	87.62% 56.64% 87.94% 92.82 %	0.066 0.009 0.067 0.067
	MatDIFFNet MatDIFFNet-2OPT MatDIFFNet MatDIFFNet-2OPT	Single Single Mixed Mixed	2.0713 1.7186 1.8385 1.6591	5.7954 5.7279 6.2332 5.8619	2.0992 0.8324 2.0648 0.8192	15.32% 44.08% 15.76% 44.52%	0.0464 0.0188 0.1112 0.0496	98.16% 98.64% 94.68% 95.64%	2.5031 2.0744 2.5619 2.0975	38.11% 14.46% 41.35% 15.73%	56.74% 71.36% 55.22% 70.08%	0.157 0.165 0.155 0.164
Scale: $N \approx 100$	Gurobi LKH (10000) LKH (500) Nearest Neighbor Farthest Insertion	- - - -	1.5661 1.5674 1.5704 2.1321 1.9333	7.7619 7.7709 7.8015 9.6696 8.4847	0.0000 0.0000 0.0000 5.4016 3.1256	100.00% 100.00% 100.00% 0.20% 26.64%	0.0000 1.0008 1.6656 8.3236 23.5160	100.00% 44.80% 28.08% 0.00% 0.00%	2.3320 2.5848 2.7594 6.3859 9.2649	10.84% 18.33% 173.84% 297.29%	100.00% 72.40% 64.04% 0.10% 13.32%	0.689 0.811 0.095 0.002 0.003
	MatNet MatNet MatNet-8x GLOP DIMES DIEMS-AS(100)	ATSP Mixed Mixed Single Mixed Mixed	1.6217 1.9849 1.9210 1.8491 2.5186 1.6968	19.0644 8.2551 8.1028 8.8849 9.5777 8.3390	17.8620 0.9776 0.3640 2.7850 3.8064 0.8480	0.00% 31.68% 69.60% 2.00% 1.16% 24.00%	40.1188 2.0408 0.7740 6.4280 3.8064 2.8040	0.00% 13.84% 50.76% 0.08% 0.00% 7.16%	19.6667 3.3146 2.7904 4.9868 6.4018 3.4220	743.34% 42.14% 19.66% 113.84% 174.52% 46.74%	0.00% 22.76% 60.18% 1.04% 0.58% 15.58%	0.015 0.018 0.095 0.176 0.124 8.437
	MatPOENet MatPOENet-8x MatPOENet*-8x	Mixed Mixed Mixed	1.9183 1.8655 1.7607	8.2987 8.1719 8.0817	0.0984 0.0052 0.0012	90.28% 99.48% 99.88 %	1.0704 0.2440 0.3244	32.32% 77.12% 70.92%	2.8465 2.5717 2.5420	22.06% 10.28% 9.01 %	61.30% 88.30% 85.40%	0.017 0.094 0.095
	MatDIFFNet MatDIFFNet-2OPT MatDIFFNet MatDIFFNet-2OPT	Single Single Mixed Mixed	1.9432 1.7165 1.8763 1.6965	7.9684 7.8482 8.9030 8.1804	4.4536 1.1404 3.2524 0.9148	2.96% 37.72% 5.68% 43.04%	0.0404 0.0240 0.1940 0.0952	98.44% 98.60% 90.52% 91.44%	3.6014 2.6823 3.5564 2.7217	54.43% 15.02% 52.50% 16.71%	50.70% 68.16% 48.10% 67.24%	0.103 0.112 0.102 0.114

Table 3: Results of both solving time and solving quality comparing Mat-X-Net (ours) and different

settings of LKH. LKH-N: LKH with 1 runs and N max_trials. Batch size = 1

g_{0}	LIXII. LIXII-	III. LIXII	with 1 /	uns and	I V MUA_I	riais. Da	tell size	– 1.		
	Method	l Time↓	ATSP↓	2DTSP↓	DHCP	(L↓, FR↑)	3SAT (I	↓, FR↑)	Avg. L↓	- ←b. Efficiency &
20	MatPOENet MatDIFFNet	7m31s 21m48s	1.6417 1.7186	5.7283 5.7279	0.0172 0.8324	98.28% 44.08%	0.2456 0.0188	77.60% 98.64%	1.9082 2.0744	Quality v.s. LKH
\approx	LKH-500 LKH-1000 LKH-10000	9m9s 13m53s 1h22m	1.5557 1.5554 1.5548	5.6964 5.6957 5.6953	0.0000 0.0000 0.0000	100.00% 100.00% 100.00%	0.4796 0.4160 0.2784	61.80% 65.68% 74.80%	1.9329 1.9168 1.8821	- County V.S. Litti
00	MatPOENet MatDIFFNet	15m35s 28m21s	1.8655 1.7165	8.1719 7.8482	0.0052	99.48% 37.72%	0.2440 0.0240	77.12% 98.60%	2.5717 2.6823	↓c. Cross-scale/task
N pprox 1	LKH-500 LKH-1000	15m49s 24m39s 2h15m	1.5704 1.5692 1.5674	7.8015 7.7909 7.7709	0.0000	100.00% 100.00%	1.6656 1.4400 1.0008	28.08% 32.52% 44.80%	2.7594 2.7000 2.5848	Fine-tuning Results

Table 13: Results of the cross-scale finetuning experiments on $N \approx 100$ sets. The MatPOENet model is pretrained under UniCO framework with different dataset of $N \approx 50$ for 2,000 epochs and subsequently finetuned on mixed data of $N \approx 100$ scale for (a much fewer) 500 iterations.

~									_
	Pretrain data	Finetune data	ATSP↓	2DTSP↓	DHCP ($L\downarrow$, $FR\uparrow$)	3SAT (L	\downarrow , FR \uparrow) \parallel	Avg. L↓
	Mixed-50	-	2.5656	8.5404	23.5064	0.00%	17.5564	0.00%	13.0422
	Mixed-50 ATSP-50	Mixed-100 Mixed-100	1.9798 1.8855	8.0573 8.3838	1.7796 0.6712	6.60% 46.72 %	2.0664 0.2888	11.68% 72.76%	3.4708 2.8073
	Mixed-100	-	1.8655	<u> </u>	0.0052	99.48%		77.12%	2.5717

Table 12: Results of the cross-task finetuning on 3SAT. MatPOENet is pretrained under UniCO framework with dataset comprising ATSP, 2DTSP and DHCP instances of $N \approx 50$ for 2,000 epochs and subsequently finetuned on the new task of 3SAT data for (a much fewer) 500 iterations.

and subsequently infectance on the new task of SSIII data for (a mach lewel) 200 iterations:								
Description	3SAT (L)↓	3SAT(FR)↑ #Epochs						
Pretrained on ATSP, 2DTSP, DHCP w/o Finetuning	1.4080	17.92% 2000						
Pretrained on ATSP, 2DTSP, DHCP w/ Finetuning on 3SAT	0.0404 0.0360 0.0292	95.96% 50 96.40% 100 97.08% 200						
Trained on merely 3SAT (control group)	0.0400	96.08% 2000						