

Diffusion Models are Evolutionary Algorithms

Yanbo Zhang¹, Benedikt Hartl^{1,2}, Hananel Hazan¹, Michael Levin^{1,3}

¹Allen Discovery Center at Tufts University

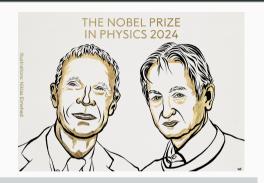
²Institute for Theoretical Physics, TU Wien, Austria

³Wyss Institute for Biologically Inspired Engineering at Harvard University

Intelligence and Learning

What is Intelligence?

- Ilya: Intelligence = compression
- Geoffrey Hinton: Intelligence = learning
 - · Adaptive, reasoning, ...
 - · self-organize



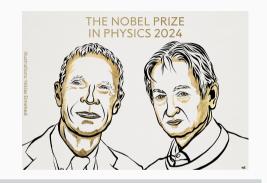
Intelligence of Evolution

- Adapting
- · Immune systems, neurons, ...
- Evolution itself can be seen as a kind of intelligence

Intelligence and Learning

What is Intelligence?

- Ilya: Intelligence = compression
- Geoffrey Hinton: Intelligence = learning
 - · Adaptive, reasoning, ...
 - · self-organize



Evolution of Intelligence

- · Machine Intelligence: diffusion model
- · Iterative: denoise, optimize, adding noise

Diffusion Model

Quick review of Diffusion Models:

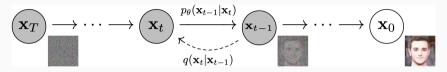


Figure 1: Example of Diffusion Models on image generation.

Diffusion and Training

Train a model to predict the added noise given x_t [1, 2].

$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon,$$

and

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{x}_0 \sim p_{\text{data}}, \boldsymbol{\epsilon} \sim \mathcal{N}(0, I)} \| \epsilon_{\theta} (\sqrt{\alpha_t} \boldsymbol{x}_0 + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}) - \boldsymbol{\epsilon} \|^2$$

Diffusion Model

Quick review of Diffusion Models:

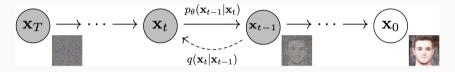


Figure 1: Example of Diffusion Models on image generation.

Denosing

Use the trained model to denoise from Gaussian distribution [2]:

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}(\boldsymbol{x}_t, t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \epsilon_{\theta}(\boldsymbol{x}_t, t) + \sigma_t \boldsymbol{w}$$

Similarity between evolution and diffusion

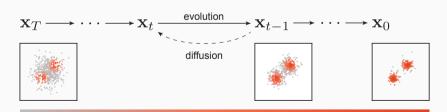
Diffusion and Evolution are both:

- directed: natural selection v.s. denoise
- randomness: mutation v.s. noise term
- optimization process

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}}\hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2}\hat{\boldsymbol{\epsilon}} + \sigma_t \boldsymbol{w}$$

Key idea

diffusion as reversed evolution, and denoising as evolution.



low fitness high fitness

Connecting Diffusion to Evolution

Three problems need to be solved:

Mapping fitness to probability density

Higher fitness f(x) corresponds to higher density p(x), which requires a mapping function $g: \mathbb{R} \to \mathbb{R}^+$:

$$p(\boldsymbol{x}) = g[f(\boldsymbol{x})].$$

Connecting Diffusion to Evolution

Three problems need to be solved:

Mapping fitness to probability density

Higher fitness f(x) corresponds to higher density p(x), which requires a mapping function $g: \mathbb{R} \to \mathbb{R}^+$:

$$p(\boldsymbol{x}) = g[f(\boldsymbol{x})].$$

Denoise Model[†]

Diffusion Models have $\epsilon(x_t,t)$ to predict noise, evolutionary algorithm also need a predictive model:

$$p(\epsilon|x_t), etc.$$

Connecting Diffusion to Evolution

Three problems need to be solved:

Mapping fitness to probability density

Higher fitness f(x) corresponds to higher density p(x), which requires a mapping function $g: \mathbb{R} \to \mathbb{R}^+$:

$$p(\boldsymbol{x}) = g[f(\boldsymbol{x})].$$

Denoise Model[†]

Diffusion Models have $\epsilon(x_t,t)$ to predict noise, evolutionary algorithm also need a predictive model:

$$p(\epsilon|x_t), etc.$$

Determine iteration method

Directly use iteration method from diffusion models.

Diffusion models are doing early prediction

Most common understanding: diffusion models are trained to predict added noise: $p(\epsilon|x_t)$.

It is hard to analyze in this perspective. However, they are also predicting the origin directly:

$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon \iff \hat{x}_0 = \frac{x_t - \sqrt{1 - \alpha_t} \epsilon}{\sqrt{\alpha_t}}$$

Hence,

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \frac{\boldsymbol{x}_t - \sqrt{\alpha_t} \hat{\boldsymbol{x}}_0}{\sqrt{1 - \alpha_t}} + \sigma_t \boldsymbol{w}$$

Early prediction $p(x_0 = x | x_t)$

Diffusion models are making early predictions, then move toward it by small steps. The model is also predicting $p(x_0 = x | x_t)$.

Estimating high-fitness parameter

Apply Bayesian equation on early prediction:

$$p(\boldsymbol{x}_0 = \boldsymbol{x} | \boldsymbol{x}_t) = \underbrace{\frac{\mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t)}{p(\boldsymbol{x}_t | \boldsymbol{x}_0 = \boldsymbol{x})} \underbrace{\frac{g[f(\boldsymbol{x})]}{p(\boldsymbol{x}_0 = \boldsymbol{x})}}_{p(\boldsymbol{x}_t)}}$$

Diffusion models are trained with MSE loss \rightarrow We need average over x:

$$\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t, \boldsymbol{\alpha}, t) = \sum_{\boldsymbol{x} \sim p_{\text{eval}}(\boldsymbol{x})} p(\boldsymbol{x}_0 = \boldsymbol{x} | \boldsymbol{x}_t) \boldsymbol{x} = \frac{1}{Z} \sum_{\boldsymbol{x} \in \boldsymbol{X}_t} g[f(\boldsymbol{x})] \mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t) \boldsymbol{x},$$

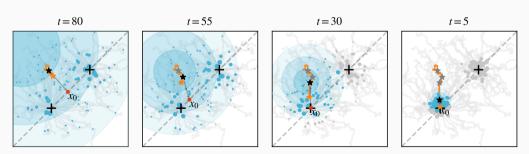
Take this back to diffusion models sampler, we got Diffusion Evolution!

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}}\hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \frac{\boldsymbol{x}_t - \sqrt{\alpha_t}\hat{\boldsymbol{x}}_0}{\sqrt{1 - \alpha_t}} + \sigma_t \boldsymbol{w}$$

Diffusion Evolution Algorithm

An example:

- 1 Random initialized population $\{oldsymbol{x}_T^{(i)}\} \sim \mathcal{N}(0, I)$
- 2 Evaluate fitness and compute density $g[f({m x})]$
- 3 Estimate $\hat{x}_0^{(i)}$ for each individual
- 4 Move toward the $\hat{m{x}}_0^{(i)}$ plus mutation noise $\sigma_t m{w}$



Selection, Mutation, and Reproductive Isolation

$$\boldsymbol{x}_{t-1} = \underbrace{\sqrt{\alpha_{t-1}} \hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \frac{\boldsymbol{x}_t - \sqrt{\alpha_t} \hat{\boldsymbol{x}}_0}{\sqrt{1 - \alpha_t}}}_{\text{directed evolution}} + \underbrace{\frac{\sigma_t \boldsymbol{w}}{\sqrt{1 - \alpha_t}}}_{\text{undirected mutation}}$$

$$\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t, \boldsymbol{\alpha}, t) = \frac{1}{Z} \sum_{\boldsymbol{x} \in \boldsymbol{X}_t} \underbrace{\frac{g[f(\boldsymbol{x})] \mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t) \boldsymbol{x}}_{\text{selection}}}_{\text{reproductive isolation}}$$

$$t=80$$
 $t=55$
 $t=30$
 $t=5$

Mapping Between Diffusion and Evolution

Diffusion		Evolution
MES loss	\leftrightarrow	Weighted average on $\hat{m{x}}_0$
$oldsymbol{x}_t = \sqrt{lpha_t} oldsymbol{x}_0 + \sqrt{1 - lpha_t} oldsymbol{\epsilon}$	\leftrightarrow	Gaussian weight as "reproductive
		isolation"
DDPM/DDIM sampling	\leftrightarrow	Evolution iteration

Table 1: Diffusion models can be decomposed into three parts, associate to three parts in evolutionary algorithm respectively.

Experiments: parallel between diffusion and evolution

Latent Space Diffusion Evolution

Original Diffusion Evolution struggles on high-dimensional space:

$$\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t, \boldsymbol{\alpha}, t) = \frac{1}{Z} \sum_{\boldsymbol{x} \in \boldsymbol{X}_t} g[f(\boldsymbol{x})] \underbrace{\mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t)}_{\text{become more local at high-dimension}} \boldsymbol{x}$$

Latent Space Diffusion Evolution

Evolve at lower-dimensional space may resolve this problem.

Diffusion Evolution on high-dimensional space

We train neural networks to solve Cart-pole system by Latent Space Diffusion Evolution.

Cart-pole system

Using the cart's survival time as the reward, the cart ends when:

- · If cart exceed certain range;
- · If pole falls down

Four inputs $(x, \theta, \dot{x}, \dot{\theta})$ and two possible control signals (move left and right).



Diffusion Evolution on high-dimensional space

We train neural networks to solve Cart-pole system by Latent Space Diffusion Evolution.

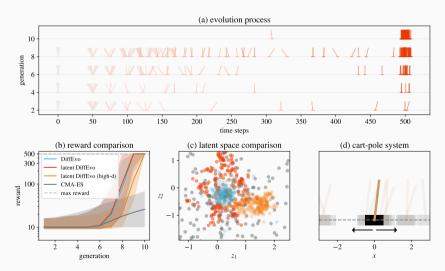
Neural network controller

- Simple version: Three layers, (4, 8, 2), with 58 neurons;
- Complex version: Four layers, (4, 128, 128, 2), with 17, 410 neurons.

Both use ReLU activation.

Diffusion Evolution on high-dimensional space

We train neural networks to solve Cart-pole system by Latent Space Diffusion Evolution.



QD-Score

Table 2: QD-scores

	Diffusion Evolution	Latent Diffusion Evolution	CMA-ES	PEPG	Open-ES	MAP-Elite
Rosenbrock	<u>35.4</u> (1.82)	<u>23.4</u> (9.78)	1.00 (0.00)	1.25 (0.43)	0.73 (0.12)	42.0 (0.36)
Beale	<u>20.0</u> (0.94)	<u>13.0</u> (4.50)	1.00 (0.00)	2.00 (0.00)	1.84 (0.72)	23.7 (0.48)
Himmelblau	<u>15.8</u> (1.18)	<u>11.4</u> (3.99)	1.00 (0.00)	1.00 (0.00)	1.00 (0.00)	18.1 (0.42)
Ackley	<u>28.3</u> (1.35)	<u>16.7</u> (9.07)	13.4 (4.53)	1.13 (0.34)	2.14 (0.63)	33.0 (0.53)
Rastrigin ²	<u>35.2</u> (2.18)	<u>17.8</u> (9.36)	18.9 (6.24)	2.30 (0.64)	3.99 (0.00)	45.2 (0.93)
Rastrigin ⁴	<u>10.6</u> (0.50)	33.1 (6.66)	6.03 (2.30)	0.67 (0.12)	1.01 (0.00)	<u>13.5</u> (0.22)
Rastrigin ³²	<u>0.96</u> (0.04)	73.4 (2.10)	0.12 (0.03)	0.06 (0.01)	0.07 (0.01)	<u>1.20</u> (0.02)
${\sf Rastrigin^{256}}$	0.11 (0.01)	70.2 (0.62)	0.01 (0.00)	0.01 (0.00)	0.00 (0.00)	0.14 (0.00)

Code

Source code available:

https://github.com/Zhangyanbo/diffusion-evolution

ICLR 2025:

https://openreview.net/forum?id=xVefsBbG20

email: Yanbo.Zhang@tufts.edu

Yanbo Zhang

Benedikt Hartl

Hananel Hazan

Michael Levin

References i

J. Ho, A. Jain, and P. Abbeel.

Denoising diffusion probabilistic models.

Advances in neural information processing systems, 33:6840–6851, 2020.

J. Song, C. Meng, and S. Ermon.

Denoising diffusion implicit models.

arXiv preprint arXiv:2010.02502, 2020.

Appendix I: Algorithm

Require: Population size N, parameter dimension D, fitness function f, density mapping function g, total evolution steps T, diffusion schedule α and noise schedule σ .

▶ Initialize population

- 1: $[oldsymbol{x}_T^{(1)}, oldsymbol{x}_T^{(2)}, ..., oldsymbol{x}_T^{(N)}] \leftarrow \mathcal{N}(0, I^{N imes D})$
- 2: **for** $t \in [T, T-1, ..., 2]$ **do**
- 3: $\forall i \in [1, N] : Q_i \leftarrow g[f(\boldsymbol{x}_t^{(i)})] \rightarrow \text{Fitness are cached to avoid repeated evaluations}$
- 4: for $i \in [1,2,..,N]$ do

5:
$$Z \leftarrow \sum_{j=1}^{N} Q_j \mathcal{N}(\boldsymbol{x}_t^{(i)}; \sqrt{\alpha_t} \boldsymbol{x}_t^{(j)}, 1 - \alpha_t)$$

- 6: $\hat{\boldsymbol{x}}_0 \leftarrow \frac{1}{Z} \sum_{i=1}^{N} Q_j \mathcal{N}(\boldsymbol{x}_t^{(i)}; \sqrt{\alpha_t} \boldsymbol{x}_t^{(j)}, 1 \alpha_t) \boldsymbol{x}_t^{(j)}$
- 7: $\boldsymbol{w} \leftarrow \mathcal{N}(0, I^D)$
- 8: $x_{t-1}^{(i)} \leftarrow \sqrt{\alpha_{t-1}} \hat{x}_0 + \sqrt{1 \alpha_{t-1}} \sigma_t^2 \frac{x_t^{(i)} \sqrt{\alpha_t} \hat{x}_0}{\sqrt{1 \alpha_t}} + \sigma_t w$
- 9: end for
- 10: end for