

# Diffusion Models are Evolutionary Algorithms

Yanbo Zhang<sup>1</sup>, Benedikt Hartl<sup>1,2</sup>, Hananel Hazan<sup>1</sup>, Michael Levin<sup>1,3</sup>

<sup>&</sup>lt;sup>1</sup>Allen Discovery Center at Tufts University

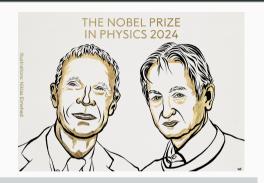
<sup>&</sup>lt;sup>2</sup>Institute for Theoretical Physics, TU Wien, Austria

<sup>&</sup>lt;sup>3</sup>Wyss Institute for Biologically Inspired Engineering at Harvard University

## **Intelligence and Learning**

#### What is Intelligence?

- Ilya: Intelligence = compression
- Geoffrey Hinton: Intelligence = learning
  - · Adaptive, reasoning, ...
  - · self-organize



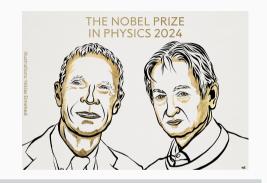
#### Intelligence of Evolution

- Adapting
- · Immune systems, neurons, ...
- Evolution itself can be seen as a kind of intelligence

## Intelligence and Learning

#### What is Intelligence?

- Ilya: Intelligence = compression
- Geoffrey Hinton: Intelligence = learning
  - · Adaptive, reasoning, ...
  - · self-organize



## **Evolution of Intelligence**

- · Machine Intelligence: diffusion model
- · Iterative: denoise, optimize, adding noise

### Diffusion Model

Quick review of Diffusion Models:

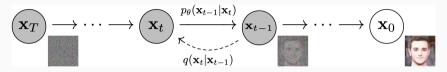


Figure 1: Example of Diffusion Models on image generation.

#### **Diffusion and Training**

Train a model to predict the added noise given  $x_t$  [1, 2].

$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon,$$

and

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{x}_0 \sim p_{\text{data}}, \boldsymbol{\epsilon} \sim \mathcal{N}(0, I)} \| \epsilon_{\theta} (\sqrt{\alpha_t} \boldsymbol{x}_0 + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}) - \boldsymbol{\epsilon} \|^2$$

### **Diffusion Model**

Quick review of Diffusion Models:

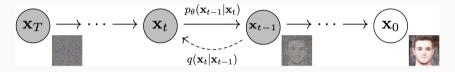


Figure 1: Example of Diffusion Models on image generation.

#### **Denosing**

Use the trained model to denoise from Gaussian distribution [2]:

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \left( \frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}(\boldsymbol{x}_t, t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \epsilon_{\theta}(\boldsymbol{x}_t, t) + \sigma_t \boldsymbol{w}$$

# Similarity between evolution and diffusion

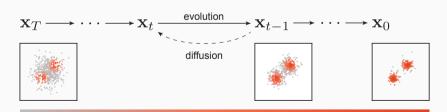
#### Diffusion and Evolution are both:

- directed: natural selection v.s. denoise
- randomness: mutation v.s. noise term
- optimization process

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}}\hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2}\hat{\boldsymbol{\epsilon}} + \sigma_t \boldsymbol{w}$$

#### Key idea

diffusion as reversed evolution, and denoising as evolution.



low fitness high fitness

## **Connecting Diffusion to Evolution**

Three problems need to be solved:

## Mapping fitness to probability density

Higher fitness f(x) corresponds to higher density p(x), which requires a mapping function  $g: \mathbb{R} \to \mathbb{R}^+$ :

$$p(\boldsymbol{x}) = g[f(\boldsymbol{x})].$$

## **Connecting Diffusion to Evolution**

Three problems need to be solved:

#### Mapping fitness to probability density

Higher fitness f(x) corresponds to higher density p(x), which requires a mapping function  $g: \mathbb{R} \to \mathbb{R}^+$ :

$$p(\boldsymbol{x}) = g[f(\boldsymbol{x})].$$

#### Denoise Model<sup>†</sup>

Diffusion Models have  $\epsilon(x_t,t)$  to predict noise, evolutionary algorithm also need a predictive model:

$$p(\epsilon|x_t), etc.$$

## **Connecting Diffusion to Evolution**

Three problems need to be solved:

### Mapping fitness to probability density

Higher fitness f(x) corresponds to higher density p(x), which requires a mapping function  $g: \mathbb{R} \to \mathbb{R}^+$ :

$$p(\boldsymbol{x}) = g[f(\boldsymbol{x})].$$

#### Denoise Model<sup>†</sup>

Diffusion Models have  $\epsilon(x_t,t)$  to predict noise, evolutionary algorithm also need a predictive model:

$$p(\epsilon|x_t), etc.$$

#### Determine iteration method

Directly use iteration method from diffusion models.

## Diffusion models are doing early prediction

Most common understanding: diffusion models are trained to predict added noise:  $p(\epsilon|x_t)$ .

It is hard to analyze in this perspective. However, they are also predicting the origin directly:

$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon \iff \hat{x}_0 = \frac{x_t - \sqrt{1 - \alpha_t} \epsilon}{\sqrt{\alpha_t}}$$

Hence,

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \frac{\boldsymbol{x}_t - \sqrt{\alpha_t} \hat{\boldsymbol{x}}_0}{\sqrt{1 - \alpha_t}} + \sigma_t \boldsymbol{w}$$

#### Early prediction $p(x_0 = x | x_t)$

Diffusion models are making early predictions, then move toward it by small steps. The model is also predicting  $p(x_0 = x | x_t)$ .

## Estimating high-fitness parameter

Apply Bayesian equation on early prediction:

$$p(\boldsymbol{x}_0 = \boldsymbol{x} | \boldsymbol{x}_t) = \underbrace{\frac{\mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t)}{p(\boldsymbol{x}_t | \boldsymbol{x}_0 = \boldsymbol{x})} \underbrace{\frac{g[f(\boldsymbol{x})]}{p(\boldsymbol{x}_0 = \boldsymbol{x})}}_{p(\boldsymbol{x}_t)}}$$

Diffusion models are trained with MSE loss  $\rightarrow$  We need average over x:

$$\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t, \boldsymbol{\alpha}, t) = \sum_{\boldsymbol{x} \sim p_{\text{eval}}(\boldsymbol{x})} p(\boldsymbol{x}_0 = \boldsymbol{x} | \boldsymbol{x}_t) \boldsymbol{x} = \frac{1}{Z} \sum_{\boldsymbol{x} \in \boldsymbol{X}_t} g[f(\boldsymbol{x})] \mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t) \boldsymbol{x},$$

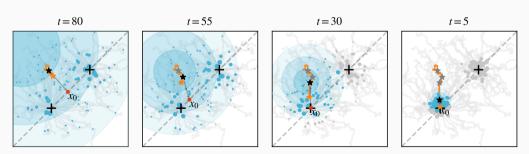
Take this back to diffusion models sampler, we got Diffusion Evolution!

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}}\hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \frac{\boldsymbol{x}_t - \sqrt{\alpha_t}\hat{\boldsymbol{x}}_0}{\sqrt{1 - \alpha_t}} + \sigma_t \boldsymbol{w}$$

# Diffusion Evolution Algorithm

## An example:

- 1 Random initialized population  $\{oldsymbol{x}_T^{(i)}\} \sim \mathcal{N}(0, I)$
- 2 Evaluate fitness and compute density  $g[f({m x})]$
- 3 Estimate  $\hat{x}_0^{(i)}$  for each individual
- 4 Move toward the  $\hat{m{x}}_0^{(i)}$  plus mutation noise  $\sigma_t m{w}$



## Selection, Mutation, and Reproductive Isolation

$$\boldsymbol{x}_{t-1} = \underbrace{\sqrt{\alpha_{t-1}} \hat{\boldsymbol{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \frac{\boldsymbol{x}_t - \sqrt{\alpha_t} \hat{\boldsymbol{x}}_0}{\sqrt{1 - \alpha_t}}}_{\text{directed evolution}} + \underbrace{\frac{\sigma_t \boldsymbol{w}}{\sqrt{1 - \alpha_t}}}_{\text{undirected mutation}}$$

$$\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t, \boldsymbol{\alpha}, t) = \frac{1}{Z} \sum_{\boldsymbol{x} \in \boldsymbol{X}_t} \underbrace{\frac{g[f(\boldsymbol{x})] \mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t) \boldsymbol{x}}_{\text{selection}}}_{\text{reproductive isolation}}$$

$$t=80$$
 $t=55$ 
 $t=30$ 
 $t=5$ 

## Mapping Between Diffusion and Evolution

| Diffusion                                                                               |                   | Evolution                          |
|-----------------------------------------------------------------------------------------|-------------------|------------------------------------|
| MES loss                                                                                | $\leftrightarrow$ | Weighted average on $\hat{m{x}}_0$ |
| $oldsymbol{x}_t = \sqrt{lpha_t} oldsymbol{x}_0 + \sqrt{1 - lpha_t} oldsymbol{\epsilon}$ | $\leftrightarrow$ | Gaussian weight as "reproductive   |
|                                                                                         |                   | isolation"                         |
| DDPM/DDIM sampling                                                                      | $\leftrightarrow$ | Evolution iteration                |

**Table 1:** Diffusion models can be decomposed into three parts, associate to three parts in evolutionary algorithm respectively.

# Experiments: parallel between diffusion and evolution

## **Latent Space Diffusion Evolution**

Original Diffusion Evolution struggles on high-dimensional space:

$$\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t, \boldsymbol{\alpha}, t) = \frac{1}{Z} \sum_{\boldsymbol{x} \in \boldsymbol{X}_t} g[f(\boldsymbol{x})] \underbrace{\mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}, 1 - \alpha_t)}_{\text{become more local at high-dimension}} \boldsymbol{x}$$

#### **Latent Space Diffusion Evolution**

Evolve at lower-dimensional space may resolve this problem.



# Diffusion Evolution on high-dimensional space

We train neural networks to solve Cart-pole system by Latent Space Diffusion Evolution.

#### Cart-pole system

Using the cart's survival time as the reward, the cart ends when:

- · If cart exceed certain range;
- · If pole falls down

Four inputs  $(x, \theta, \dot{x}, \dot{\theta})$  and two possible control signals (move left and right).



# Diffusion Evolution on high-dimensional space

We train neural networks to solve Cart-pole system by Latent Space Diffusion Evolution.

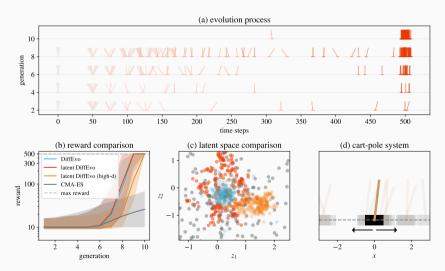
#### Neural network controller

- Simple version: Three layers, (4, 8, 2), with 58 neurons;
- Complex version: Four layers, (4, 128, 128, 2), with 17, 410 neurons.

Both use ReLU activation.

# Diffusion Evolution on high-dimensional space

We train neural networks to solve Cart-pole system by Latent Space Diffusion Evolution.



## QD-Score

Table 2: QD-scores

|                         | Diffusion<br>Evolution | Latent<br>Diffusion<br>Evolution | CMA-ES      | PEPG        | Open-ES     | MAP-Elite          |
|-------------------------|------------------------|----------------------------------|-------------|-------------|-------------|--------------------|
| Rosenbrock              | <u>35.4</u> (1.82)     | <u>23.4</u> (9.78)               | 1.00 (0.00) | 1.25 (0.43) | 0.73 (0.12) | <b>42.0</b> (0.36) |
| Beale                   | <u>20.0</u> (0.94)     | <u>13.0</u> (4.50)               | 1.00 (0.00) | 2.00 (0.00) | 1.84 (0.72) | <b>23.7</b> (0.48) |
| Himmelblau              | <u>15.8</u> (1.18)     | <u>11.4</u> (3.99)               | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | <b>18.1</b> (0.42) |
| Ackley                  | <u>28.3</u> (1.35)     | <u>16.7</u> (9.07)               | 13.4 (4.53) | 1.13 (0.34) | 2.14 (0.63) | <b>33.0</b> (0.53) |
| Rastrigin <sup>2</sup>  | <u>35.2</u> (2.18)     | <u>17.8</u> (9.36)               | 18.9 (6.24) | 2.30 (0.64) | 3.99 (0.00) | <b>45.2</b> (0.93) |
| Rastrigin <sup>4</sup>  | <u>10.6</u> (0.50)     | <b>33.1</b> (6.66)               | 6.03 (2.30) | 0.67 (0.12) | 1.01 (0.00) | <u>13.5</u> (0.22) |
| Rastrigin <sup>32</sup> | <u>0.96</u> (0.04)     | <b>73.4</b> (2.10)               | 0.12 (0.03) | 0.06 (0.01) | 0.07 (0.01) | <u>1.20</u> (0.02) |
| ${\sf Rastrigin^{256}}$ | 0.11 (0.01)            | <b>70.2</b> (0.62)               | 0.01 (0.00) | 0.01 (0.00) | 0.00 (0.00) | 0.14 (0.00)        |

## Code

Source code available:

https://github.com/Zhangyanbo/diffusion-evolution

ICLR 2025:

https://openreview.net/forum?id=xVefsBbG20

email: Yanbo.Zhang@tufts.edu



Yanbo Zhang



Benedikt Hartl



Hananel Hazan



Michael Levin

## References i



J. Ho, A. Jain, and P. Abbeel.

Denoising diffusion probabilistic models.

Advances in neural information processing systems, 33:6840–6851, 2020.



J. Song, C. Meng, and S. Ermon.

Denoising diffusion implicit models.

arXiv preprint arXiv:2010.02502, 2020.

## Appendix I: Algorithm

**Require:** Population size N, parameter dimension D, fitness function f, density mapping function g, total evolution steps T, diffusion schedule  $\alpha$  and noise schedule  $\sigma$ .

▶ Initialize population

- 1:  $[oldsymbol{x}_T^{(1)}, oldsymbol{x}_T^{(2)}, ..., oldsymbol{x}_T^{(N)}] \leftarrow \mathcal{N}(0, I^{N imes D})$
- 2: **for**  $t \in [T, T-1, ..., 2]$  **do**
- 3:  $\forall i \in [1, N] : Q_i \leftarrow g[f(\boldsymbol{x}_t^{(i)})] \rightarrow \text{Fitness are cached to avoid repeated evaluations}$
- 4: for  $i \in [1,2,..,N]$  do

5: 
$$Z \leftarrow \sum_{j=1}^{N} Q_j \mathcal{N}(\boldsymbol{x}_t^{(i)}; \sqrt{\alpha_t} \boldsymbol{x}_t^{(j)}, 1 - \alpha_t)$$

- 6:  $\hat{\boldsymbol{x}}_0 \leftarrow \frac{1}{Z} \sum_{i=1}^{N} Q_j \mathcal{N}(\boldsymbol{x}_t^{(i)}; \sqrt{\alpha_t} \boldsymbol{x}_t^{(j)}, 1 \alpha_t) \boldsymbol{x}_t^{(j)}$
- 7:  $\boldsymbol{w} \leftarrow \mathcal{N}(0, I^D)$
- 8:  $x_{t-1}^{(i)} \leftarrow \sqrt{\alpha_{t-1}} \hat{x}_0 + \sqrt{1 \alpha_{t-1}} \sigma_t^2 \frac{x_t^{(i)} \sqrt{\alpha_t} \hat{x}_0}{\sqrt{1 \alpha_t}} + \sigma_t w$
- 9: end for
- 10: end for