

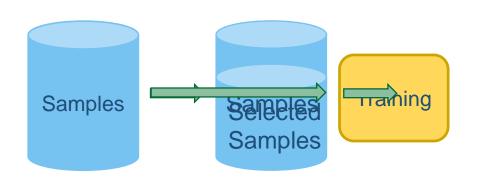
Structural-Entropy-Based Sample Selection for Efficient and Effective Learning

Tianchi Xie^{1,*}, Jiangning Zhu^{1,*}, Guozu Ma², Minzhi Lin¹, Wei Chen³, Weikai Yang⁴, Shixia Liu¹

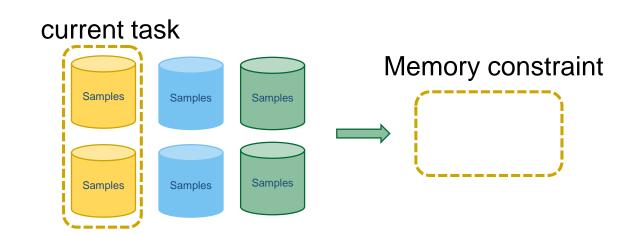
1 Tsinghua University
2 China Telecom Wanwei Information Technology Co., Ltd
3 Microsoft Research
4 Hong Kong University of Science and Technology (Guangzhou)

Motivation

Data budgets that limit sample sizes are pervasive.



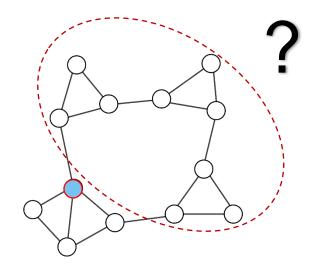
Select samples for training efficiency



Select samples for training effectiveness

Related Work

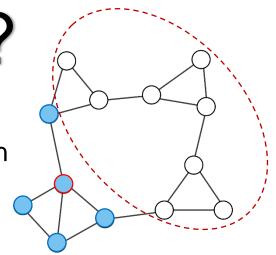
- Existing sample selection methods primarily utilize local information.
- > Attribute-based methods:
 - EL2N (Paul et al., 2021)
 - AUM (Pleiss et al., 2020)
 - Forgetting (Toneva et al., 2019)



Focus on local information, but ignore global information

> Connection-based methods:

- D² Pruning (Maharana et al., 2024)
- Moderate corset (Xia et al., 2023)
- GraphCut (lyer et al., 2021)



Challenges & Solution

- How to decompose the global information metric to the level of individual nodes?
 - A node-level structural entropy metric that quantifies the importance of nodes in preserving the global structure

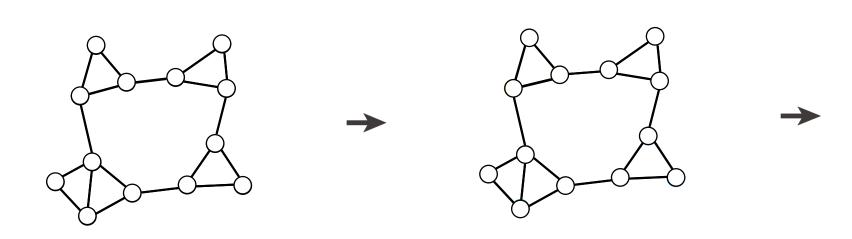
- How to employ the node-level metric for sample selection?
 - A structural-entropy-based sample selection method that integrates both global and local metrics

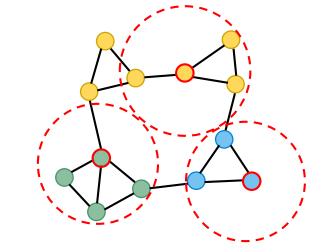
Overview

Graph Construction

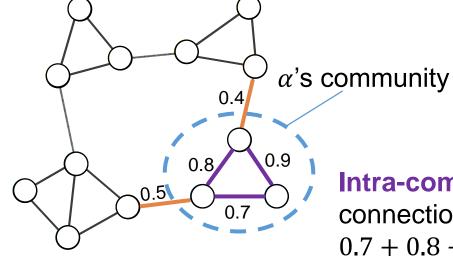
Node-Level Structural Entropy

Importance-Biased Blue Noise Sampling





Structural Entropy



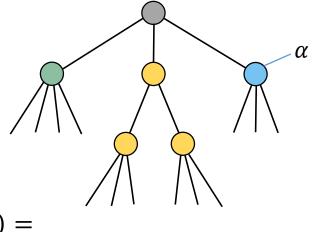
Intra-community

connections $vol(\alpha) =$ 0.7 + 0.8 + 0.9

Inter-community

connections
$$g(\alpha) = 0.5 + 0.4$$

Encoding Tree T



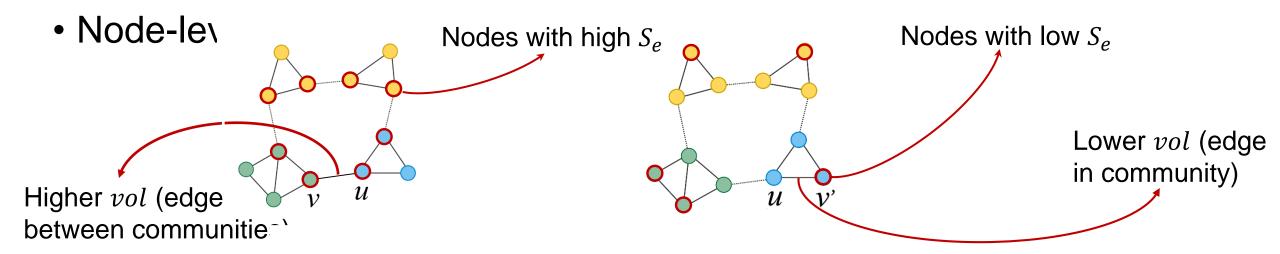
Structural entropy: $\mathcal{H}(G,\mathcal{T}) = -\sum_{\alpha \in \mathcal{T}} \frac{g(\alpha)}{vol(V)} \log \frac{vol(\alpha)}{vol(\alpha^{-})}$

Only a single value for the whole graph!

Node-Level Structural Entropy

Use the Shapley value to decompose structural entropy:

$$\phi(u) = \frac{1}{|V|} \sum_{V_s \subseteq V \setminus \{u\}} \binom{|V| - 1}{|V_S|}^{-1} \Big(\mathcal{H}(G[V_S \cup \{u\}], \mathcal{T}) - \mathcal{H}(G[V_S], \mathcal{T}) \Big)$$



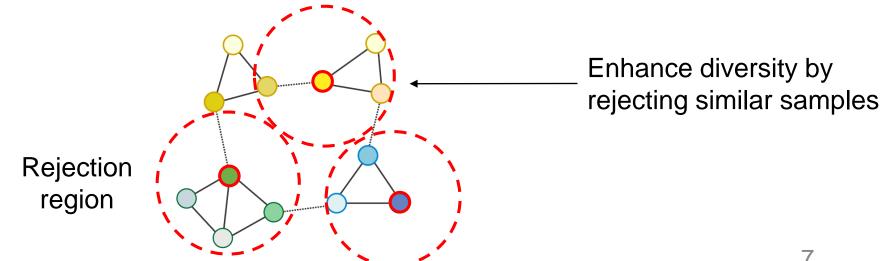
Importance-Biased Blue Noise Sampling

Importance score:

$$S(u) = S_e(u) \cdot S_t(u)$$

Node-level **Training** structural entropy difficulty (global metric) (local metric)

Blue noise sampling:



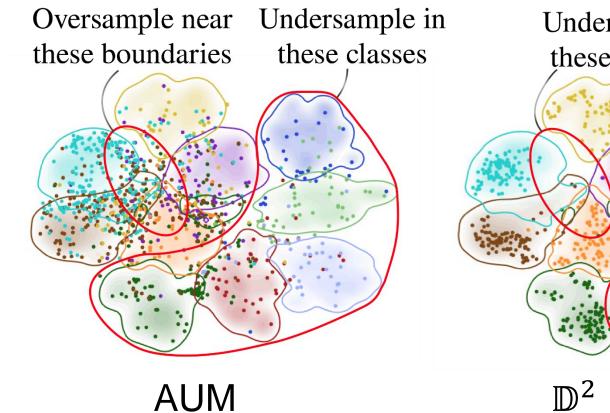
Experiment

- Three learning scenarios:
 - Supervised learning: Image classification, text classification, object detection, and VQA
 - Active learning: Image classification
 - Continual learning: Image classification
- Baselines: Random, AUM, EL2N,
 Forgetting, CCS, D² pruning...

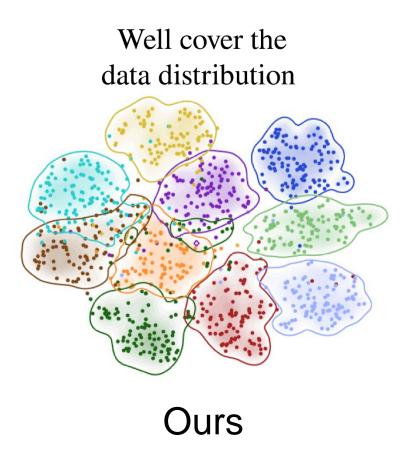
	(a) ImagaNa		/L\ ANT I							
Dataset	Dataset	ImageNet-1K (100%:73.63)								
Dataset Sampling	Sampling rate	70%	50%	20%	10%	5%	2%	1%	2%	1%
Random Moderate	Random	71.12	69.43	58.77	47.36	33.41	16.41	5.41	7.50 5.83	35.96 33.91
\mathbb{CCS} \mathbb{D}^2 Pruni	Moderate	71.48	68.68	56.35	42.29	$\overline{26.77}$	$\overline{11.37}$	$\overline{4.22}$	7.41 7.92	36.82 36.29
GraphCu Entropy	CCS	71.46	<u>69.50</u>	58.85	45.06	28.02	9.03	2.33	5.44	34.02 36.40
Forgettin	GraphCut	71.50	69.16	56.08	40.99	24.30	7.90	2.46	5.78	35.03
EL2N AUM	\mathbb{D}^2 Pruning	<u>71.62</u>	69.02	<u>59.65</u>	45.97	28.08	14.24	4.79	4.33 4.16	34.27 33.62
Variance k-means	Prototypicality	70.12	66.00	49.20	35.27	24.14	13.88	4.95	3.50 6.74	33.17 36.11
k-DPP SES (Our	SES (Ours)	72.11	70.15	60.22	48.10	34.82	17.97	6.69	7.44 9.88	36.66 38.16

Dataset	Permuted MNIST		Split MNIST		Split CIFAR10		Split CIFAR100		Split Tiny-ImageNet		
Memory size	100	200	100	200	100	200	100	200	100	200	1%
$\overline{\mathbb{D}^2 \ \mathbf{Pruning}}$	78.25	79.94	96.79	97.69	64.54	66.08	51.86	54.50	19.08	19.50	5.11
GraphCut	76.98	78.61	91.34	94.25	61.02	61.66	53.35	54.66	19.76	20.53	6.54 5.59
k-center	78.17	79.75	94.39	96.61	61.47	62.74	51.16	53.10	18.87	18.90	6.29
Gradient Matching	77.30	79.27	95.39	97.54	61.65	62.65	54.13	56.29	19.19	19.00	6.54
FRCL	77.33	79.21	94.48	97.10	61.67	62.93	51.40	54.28	18.86	19.01	4.60 5.60
iCaRL	78.94	80.65	89.50	97.59	62.33	64.08	54.62	56.11	19.58	19.85	6.13
Greedy Coreset	78.71	80.13	96.07	<u>97.76</u>	63.18	62.98	56.17	<u>57.72</u>	19.24	19.98	7.61
BCSR	77.74	79.51	94.77	96.98	63.23	64.59	50.21	51.49	18.75	18.74	
SES (Ours)	79.92	81.18	96.94	98.28	68.26	69.32	57.60	59.69	20.80	21.20	_

Qualitative Analysis



Undersample near these boundaries \mathbb{D}^2 pruning



Conclusion and Future Work

- A structural-entropy-based sample selection method
 - Decompose graph-level structural entropy to the node level
 - Combine global metric and local metric to select informative and representative samples

- Future Work
 - Automate the hyperparameter selection
 - Improve the support for multimodal data

Thank you!

Structural-Entropy-Based Sample Selection for Efficient and Effective Learning

Tianchi Xie^{1,*}, Jiangning Zhu^{1,*}, Guozu Ma², Minzhi Lin¹, Wei Chen³, Weikai Yang⁴, Shixia Liu¹

1 Tsinghua University
2 China Telecom Wanwei Information Technology Co., Ltd
3 Microsoft Research

4 Hong Kong University of Science and Technology (Guangzhou)