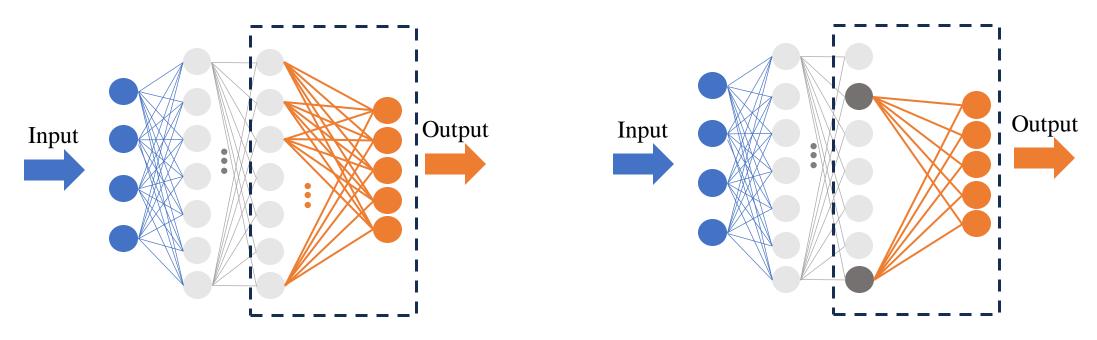


Enhancing Uncertainty Estimation and Interpretability via Bayesian Non-Negative Decision Layer

Motivation

Interpretable via Sparsity

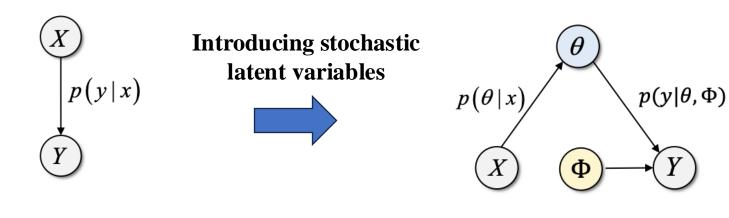
DNN: Deep feature extractor + Decision layer



- Dense decision layer: millions of parameters operating on thousands of deep features
- Sparse decision later: inspecting only the few linear coefficients and deep features that dictate its predictions

Motivation

Uncertainty Estimation via Bayesian Network



(d) Inference Model of BNDL

 $q(\theta|x)$

Graphical Model of DNNs

 $\mathbf{y}_{j} \mid \boldsymbol{\theta}_{j} \sim \operatorname{Category}(\boldsymbol{\theta}_{j} \mathbf{\Phi}), \boldsymbol{\theta}_{j} \mid \mathbf{x}_{j} \sim \operatorname{Gamma}(f_{\theta}(x_{j}), 1), \mathbf{\Phi} \sim \operatorname{Gamma}(1, 1).$

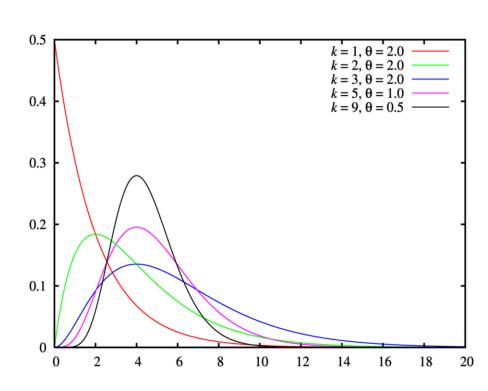
(c) Generative

Model of BNDL

Bayesian Non-negative Decision Layer

Theoretical Guarantees

$$\mathbf{y}_{j} \mid \boldsymbol{\theta}_{j} \sim \operatorname{Category}(\boldsymbol{\theta}_{j} \mathbf{\Phi}), \boldsymbol{\theta}_{j} \mid \mathbf{x}_{j} \sim \operatorname{Gamma}(f_{\theta}(x_{j}), 1), \mathbf{\Phi} \sim \operatorname{Gamma}(1, 1).$$



PDF of Gamma Distribution

Properties of Gamma Distribution

- Non-negativity
- Sparsity

Consistent with the **identifiability** proposition

Proposition 1 ((Gillis & Rajkó, 2023)). The k-th column of θ is identifiable under the two assumptions:

- Selective Window: There exists a row of Φ , say the j-th, such that $\Phi(j,:) = \alpha e_{(k)}^T$ for $\alpha > 0$, where $e_{(k)}^T$ represents the k-th standard row vector in vector space.
- Sparsity Constrain: The k-th column of Φ contains at least r-1 entries equal to zero, where r is the rank of Y.

BNDL fit the above assumptions, and has proven to be

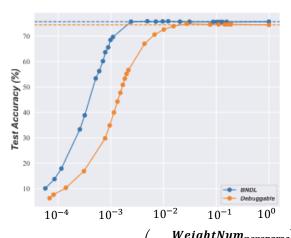
identifiable and interpretable

Experimental Results

Enhancing sparsity while maintaining model performance

Model	CIFAR-10		CIFAR-100		ImageNet-1k	
	ACC	PAvPU	ACC	PAvPU	ACC	PAvPU
ResNet	94.98 ± 0.12	-	74.62 ± 0.23	-	75.33 ± 0.14	-
MC Dropout	94.54 ± 0.03	78.83 ± 0.12	78.12 ± 0.06	64.41 ± 0.22	75.98 ± 0.08	76.50 ± 0.02
BM	94.07 ± 0.07	93.98 ± 0.3	75.81 ± 0.34	77.13 ± 0.67	-	-
CARD	90.93 ± 0.02	91.11 ± 0.04	71.42 ± 0.01	71.48 ± 0.03	76.20 ± 0.00	76.29 ± 0.01
ResNet-BNDL	$\textbf{95.54} \pm \textbf{0.08}$	$\textbf{95.58} \pm \textbf{0.20}$	$\textbf{79.82} \pm \textbf{0.13}$	$\textbf{81.1} \pm \textbf{0.21}$	$\textbf{77.01} \pm \textbf{0.14}$	$\textbf{77.66} \pm \textbf{0.03}$
ViT-Base	95.51 ± 0.03	-	84.15 ± 0.03	-	80.33	-
ViT-BNDL	96.34 ± 0.04	$\textbf{97.01} \pm \textbf{0.02}$	85.16 ± 0.03	$\textbf{86.37} \pm \textbf{0.11}$	$\textbf{81.29} \pm \textbf{0.02}$	$\textbf{82.50} \pm \textbf{0.03}$

 \triangleright ReLU(x – α): dynamically pruning small weights



- of spar
- Compared with other sparse decision layer method
 - ✓ Achieving higher accuracy under the same level of sparsity

Experimental Results

Interpretable Features

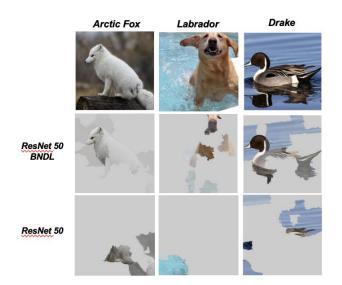
• Non-negativity Constrain

$$\boldsymbol{\theta}_j \mid \boldsymbol{x}_j \sim \text{Gamma}\left(f_{\theta}(x_j), 1\right), \boldsymbol{\Phi} \sim \text{Gamma}\left(1, 1\right).$$

Enforce θ and Φ to be non-negative

Ensures that different features will not cancel one another out

Interpretable Features

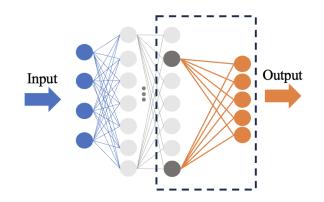


Feature Visualization of BNDL and Baseline Models

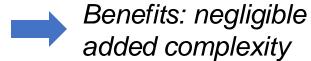
- ➤ BNDL's features align more closely with the semantic meaning of true labels
- ➤ More disentangled and interpretable features

Experimental Results

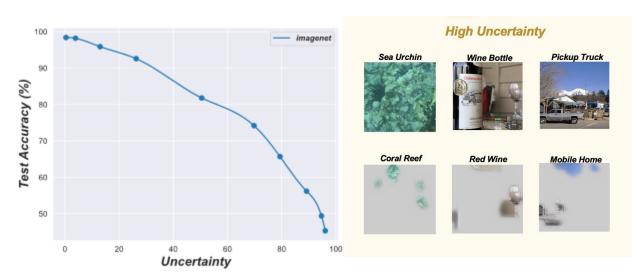
Uncertainty Estimation via Bayesian Last Layer



Only Modify the decision layer, Enabling uncertainty Estimation



Visualizing High Uncertainty Sample



- > negative correlation between uncertainty and accuracy
- ➤ samples with high uncertainty often belong to ambiguous classification boundary cases (e.g., misclassifying "wine bottle" as "wine glass")

Thank you for Listening