Aligning Visual Contrastive Learning Models via Preference Optimization • ICLR 2025

Amirabbas Afzali, Borna Khodabandeh, Ali Rasekh, Mahyar JafariNodeh, Sepehr Kazemi, Simon Gottschalk L3S Research Center

Introduction & Motivation

- ➤ Vision-Language Models (e.g., CLIP) are powerful but vulnerable to some attacks like typographic attack and inherent biases.
- Aligning model behavior, in retrieval tasks, classification and downstream tasks with human preferences is crucial for fairness and robustness.
- ► Preference Optimization (PO) methods like RLHF, DPO, IPO, and KTO have been successful in generative models.

Background on Preference Optimization

- ▶ PO aims to train models to align with human preferences.
- Common methods include:
 - Reinforcement Learning from Human Feedback (RLHF): Uses a reward model trained on preferences to guide policy learning.
 - Direct Preference Optimization (DPO): Directly optimizes the policy based on preferences, without an explicit reward model.
 - Identity Preference Optimization (IPO): An alternative approach to directly optimizing the policy.
 - ► Kahneman-Tversky-Optimization (KTO): Another direct optimization method.
- ▶ These methods have shown success in aligning generative models.

Method in 30 Seconds

Core Idea

Teach CLIP to prefer human-aligned behaviors using AI alignment techniques

- What's New:
 - First application of PO methods to contrastive vision-language models
 - ► Simple training framework requiring only synthetic datasets with:
 - Problem cases (attacks/biases)
 - Normal (clean) examples
- Key Feature:
 - Adjustable "concept knobs" after training
 - e.g., control gender bias strength

Problem Formulation

- We frame the problem as a Markov Decision Process (MDP).
- ▶ The learning task is modeled as: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \rho_0, R)$
- ► Components:
 - \triangleright $s \triangleq x$
 - ► $a \triangleq y$

 - $ightharpoonup R(s,a) \triangleq r(x,y)$
- ► Similarity score: $f_{\theta}(x, y) = \mathcal{I}_{\theta}(x)^T \mathcal{T}_{\theta}(y) / \tau$

Preference-Based Contrastive Optimization

► Policy ratio:

$$h_{\pi_{\theta}}(y_w, y_l, x) = (\log \pi_{\theta}(y_w|x) - \log \pi_{\theta}(y_l|x)) - (\log \pi_{\mathsf{ref}}(y_w|x) - \log \pi_{\mathsf{ref}}(y_l|x))$$

Simplified for CLIP like models:

$$h_{\pi_{ heta}}(y_w, y_l, x) = \frac{1}{\tau} (\mathcal{I}_{ heta}(x) - \mathcal{I}_{\mathsf{ref}}(x))^{\top} (\mathcal{T}(y_w) - \mathcal{T}(y_l))$$

Preference objectives:

$$\mathcal{L}_{\mathsf{DPO}}(\pi_{\theta}, \pi_{\mathsf{ref}}) = \mathbb{E}_{(\mathsf{x}, \mathsf{y}_{\mathsf{w}}, \mathsf{y}_{\mathsf{l}}) \sim \mathcal{D}}[-\log \sigma(\beta h_{\pi_{\theta}}(\mathsf{y}_{\mathsf{w}}, \mathsf{y}_{\mathsf{l}}, \mathsf{x}))]$$

$$\mathcal{L}_{\mathsf{IPO}}(\pi_{ heta}, \pi_{\mathsf{ref}}) = \mathbb{E}_{(\mathsf{x}, \mathsf{y}_{\mathsf{w}}, \mathsf{y}_{\mathsf{l}}) \sim \mathcal{D}} \left[\left(h_{\pi_{ heta}}(\mathsf{y}_{\mathsf{w}}, \mathsf{y}_{\mathsf{l}}, \mathsf{x}) - rac{eta^{-1}}{2}
ight)^2
ight]$$

Regularization

We introduce a regularization term to ensure the trained model remains close to the reference model:

$$\mathcal{L}_{\text{reg}}(\pi, \pi_{\text{ref}}; \mathcal{D}_{\text{reg}}) = D_{\text{KL}}(\pi(y|x) || \pi_{\text{ref}}(y|x)) = \mathbb{E}_{x \sim \mathcal{D}_{\text{reg}}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)} \right].$$

The final loss function is defined as:

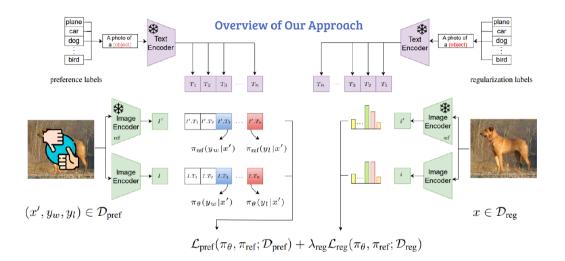
$$\mathcal{L}(\pi_{\theta}, \pi_{\mathsf{ref}}; \mathcal{D}) = \mathcal{L}_{\mathsf{pref}}(\pi_{\theta}, \pi_{\mathsf{ref}}; \mathcal{D}_{\mathsf{pref}}) + \lambda_{\mathsf{reg}} \mathcal{L}_{\mathsf{reg}}(\pi_{\theta}, \pi_{\mathsf{ref}}; \mathcal{D}_{\mathsf{reg}}).$$

Linear Transformations and Adaptations

- ▶ Linear transformation matrix *W* to adjust the similarity function.
- \triangleright SVD: $W = U\Sigma V^T$
- Modified similarity function:

$$\tilde{f}(y,x) = \mathcal{I}(x)^T W^T W T(y) / \tau = (V^T \mathcal{I}(x))^T \Sigma^2 (V^T T(y)) / \tau$$

► Tune singular values using matrix powers: $W_t = U\Sigma^t V^T$



Experiments Results

- Experiments to evaluate effectiveness:
 - ► Typographic Robustness
 - Control between Optical Character Recognition (OCR) and Object Detection (OD)
 - Disentangling Gender Understanding

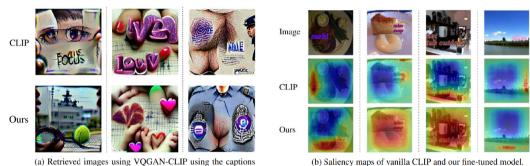
Typographic Robustness

Method	Caltech101		OxfordPets		StanfordCars		Flowers102		FGVCAircraft		DTD		SUN397		EuroSAT		Avg.	
	0	Т	0	T	0	Т	0	T	0	Т	O	T	0	Т	O	T	0	T
CLIP	88.64	63.97	87.35	58.95	58.72	21.02	66.32	31.32	18.99	10.83	44.57	25.53	61.74	34.02	42.98	4.86	58.66	31.31
Materzynska+	80.53	74.73	75.01	63.61	40.33	15.79	51.86	34.95	13.23	8.28	36.28	33.03	51.06	39.52	37.32	16.22	48.25	35.77
PAINT	88.48	83.57	85.23	76.53	55.30	33.44	64.73	54.92	17.73	14.46	42.61	36.60	61.69	53.62	38.20	17.31	56.74	46.31
Defense-Prefix	89.28	79.54	87.22	72.86	57.47	28.64	63.82	44.12	19.26	14.49	40.64	31.60	61.41	43.50	43.85	9.85	57.87	40.58
Ours (DPO)	87.50	85.43	85.25	79.72	56.03	34.33	56.60	55.70	16.21	13.87	39.36	38.48	61.02	56.34	49.33	28.32	56.41	49.02
Ours (IPO)	85.73	83.78	85.32	80.44	53.67	35.02	54.50	52.80	17.97	15.86	40.53	39.94	61.91	58.05	46.12	43.23	55.72	51.14
Ours (KTO)	87.67	86.02	85.41	81.02	57.76	37.04	59.10	58.00	17.27	15.59	40.74	40.33	62.52	59.01	46.26	36.94	57.09	51.74
Difference	↓1.61	↑2.45	↓1.81	↑4.47	↑0.9	↑3.60	↓5.63	↑3.08	↓1.99	↑1.10	↓1.87	↑3.73	↑0.83	↑5.39	↑2.41	↑19.63	↓0.78	↑5.43

Table 1: Classification accuracy on: O (Original dataset) and T (Typographic dataset).

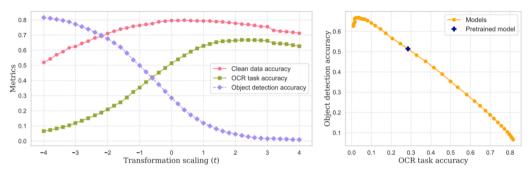
Typographic Robustness

"focus", "Love", "Male police" and "Time" for image generation.



(b) Saliency maps of vanilla CLIP and our fine-tuned model.

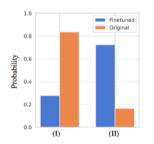
Control between OCR and OD



(a) Accuracy on typographic samples and percentage of typo- (b) Frontier of a DPO fine-tuned model, graphic label predictions versus transformation scaling factor t. showing OCR vs. OD accuracy across As t increases, the model favors object labels over typographic with varying t. labels while maintaining accuracy.

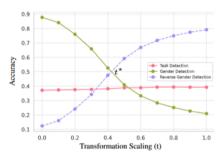
Disentangling Gender Understanding

(a) Example image showing a man working.



(b) Model predictions before and after applying our gender-flipping method, showing changes in the predicted captions:

- (I) "The man in the photo is working."
- (II) "The woman in the photo is working."



(c) As t increases from 0 to 1, genderspecific predictions are reversed. t* marks the point where gender information is neutralized, leading to balanced male and female predictions.

Disentangling Gender Understanding

Figure 4: Retrieved images for caption "an image of a police", Top: Reversed(6W,4M), Middle: Original(2W, 8M), Bottom: Neutralized(5W, 5M) being the model at $t=t^*$

Conclusion

- ► We propose a novel approach to aligning and steering visual contrastive learning models with human preferences using Preference Optimization.
- Our method opens new avenues for developing more reliable and human-centered vision-language models.
- Additionally, this work provides insights into the principles and intuition behind Preference Optimization.

Contact

- Amirabbas Afzali L₃S Research Center
- amir8afzali@gmail.com
- www.l3s.de