
On Calibration of LLM-based Guard Models for Reliable Content Moderation

Hongfu Liu¹, Hengguan Huang², Xiangming Gu¹, Hao Wang³, Ye Wang¹

¹National University of Singapore, ²University of Copenhagen, ³Rutgers University

ICLR 2025

Background

Motivation

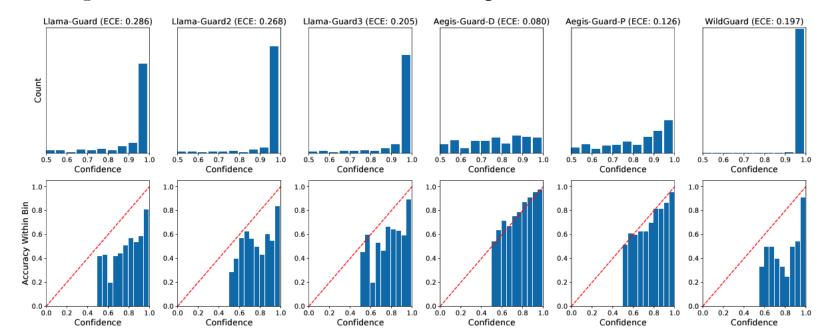
- Existing LLM-based guardrail models focus on **classification performance**, they
 - Overlook the **uncertainty/confidence** of prediction
 - Fail to assess the reliability of model prediction confidence

• **Question**: How can we trust model's prediction, especially in specific scenarios such as jailbreak attacks?

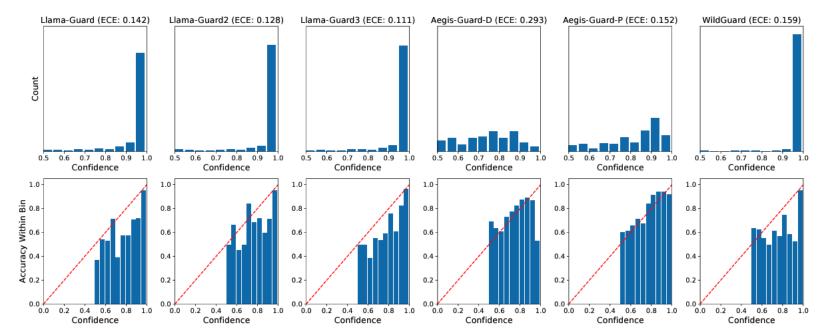
Experimental Setup

- 9 LLM-based open-source guardrail models
 - o Llama-Guard-1/2/3, from **Meta Llama**
 - o Aegis-Guard-D/P, from **NVIDIA**
 - o HarmBench-Llama/Mistral, from **UIUC & Center for AI Safety**
 - o MD-Judge, from **Shanghai AI Lab**
 - o WildGuard, from Allen Institute for AI
- 12 public benchmarks
 - Prompt Classification: OpenAI Moderation, ToxicChat, AegisSafety, SimpleSafetyTest, XSTest, HarmBench, WildGuardMix
 - o **Response** Classification: BeaverTails, SafeRLHF, HarmBench, WildGuardMix

Experimental Setup

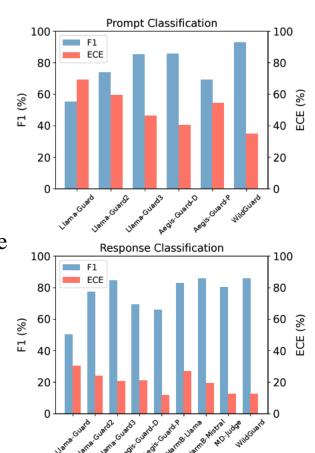

- Focus on Binary Classification,
 - O Variability of safety taxonomies across guardrail models and datasets
 - A critical **precursor** to multiclass prediction

- Expected Calibration Error (ECE)
 - Assess the model's confidence calibration
 - \circ ECE > 10% indicates poor calibration


$$ECE = \sum_{m=1}^{M} \frac{|B_m|}{N} |Acc(B_m) - Conf(B_m)|,$$

$$Acc(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbf{1}(\hat{y}_i = y_i), \quad Conf(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i$$

- Guardrail models tend to make **overconfident** predictions with high probability.
- **Prompt** Classification on WildGuardMix Prompt Test Set


- Guardrail models tend to make **overconfident** predictions with high probability.
- Response Classification on WildGuardMix Response Test Set

- Guardrail models tend to make **overconfident** predictions with high probability.
 - WildGuard stands out in prompt classification
 - O **MD-Judge** stands out in response classification

Madal			Pı	ompt Cl	lassifica	Response Classification							
Model	OAI	ToxiC	SimpST	Aegis	XST	HarmB	WildGT	Avg.	BeaverT	S-RLHF	HarmB	WildGT	Avg.
Llama-Guard	9.0	11.0	32.6	29.6	20.5	68.1	28.6	28.5	29.1	24.4	23.2	14.2	22.7
Llama-Guard2	13.7	15.9	26.5	34.7	12.2	30.3	26.8	22.9	29.9	25.2	24.9	12.8	23.2
Llama-Guard3	13.9	14.5	7.6	33.4	13.9	8.8	20.5	16.1	32.3	25.3	27.2	11.1	24.0
Aegis-Guard-D	30.2	20.5	9.7	16.4	23.5	50.5	8.0	22.7	18.1	30.9	26.1	29.3	26.1
Aegis-Guard-P	15.7	8.2	16.5	22.6	18.6	59.4	12.6	22.0	18.6	25.6	18.0	15.2	19.4
HarmB-Llama	-	-	-	-	-	-	-	-	24.9	19.4	15.1	52.5	28.0
HarmB-Mistral	-	-	-	-	-	-	-	-	18.1	14.5	13.1	25.6	17.8
MD-Judge	-	-	-	-	-	-	-	_	10.9	9.4	17.7	7.7	11.4
WildGuard	33.8	19.8	4.4	12.0	5.0	6.3	19.7	14.4	23.2	23.3	12.8	15.9	18.8

- Dataset: Harmbench
- Miscalibration in prompt classification is more pronounced than in response classification under jailbreak attacks.
- SOTA WildGuard achieves F1 score of 92.8%, but the ECE score remains 34.9%
- Larger shift in adversarial prompt distribution than LLM response distribution

- **Inconsistent reliability** when classifying outputs from different response LLMs
 - o 10 different response LLMs
- **Limitation** of training data for guardrail models

Guard Model	Response Model											
Guard Model	Metric	Baichuan2	Qwen	Solar	Llama2	Vicuna	Orca2	Koala	OpenChat	Starling	Zephyr	
Llama-Guard	F1	57.8	66.7	54.2	44.4	64.0	62.7	74.6	60.6	66.7	72.7	
	ECE	26.9	23.0	49.4	10.5	28.0	26.4	27.4	40.3	46.3	38.5	
Llama-Guard2	F1	77.8	88.9	82.8	71.4	72.1	80.6	78.4	70.0	82.0	78.4	
	ECE	18.2	5.8	27.1	7.9	28.4	25.2	30.4	28.5	37.0	39.4	
Llama-Guard3	F1	73.8	82.4	84.1	60.0	83.3	82.2	77.5	76.4	91.2	87.7	
	ECE	33.7	17.1	31.0	27.4	20.5	27.3	36.5	34.2	27.6	23.1	
Aegis-Guard-D	F1	60.3	66.7	71.2	31.2	63.3	65.8	69.9	78.3	84.4	89.3	
	ECE	35.5	27.1	22.2	40.8	34.0	33.9	31.3	30.9	27.8	30.9	
Aegis-Guard-P	F1	57.6	66.7	67.9	33.3	56.3	72.7	72.2	76.2	83.3	80.8	
	ECE	22.8	17.4	28.3	23.6	26.2	28.2	32.1	35.5	36.3	25.7	
HarmB-Llama	F1	89.7	100.0	90.6	70.6	90.9	86.2	88.9	89.4	90.9	94.5	
	ECE	17.7	6.4	25.0	23.5	16.0	19.5	26.7	23.2	23.3	20.1	
HarmB-Mistral	F1	84.4	100.0	87.5	80.0	92.3	84.8	92.8	90.9	89.2	94.5	
	ECE	28.0	3.0	30.1	12.8	16.6	17.5	16.0	14.9	27.7	19.9	
MD-Judge	F1	75.4	79.1	77.2	55.6	74.2	76.9	75.3	76.6	87.5	92.6	
	ECE	22.4	14.4	19.3	24.1	19.9	16.7	26.2	25.5	26.0	17.9	
WildGuard	F1	82.0	91.3	88.5	80.0	89.9	84.8	81.6	88.9	92.5	94.5	
	ECE	22.1	9.2	15.5	17.0	11.2	20.1	37.3	25.4	18.6	21.3	

Improve Confidence Calibration

- Temperature Scaling (TS)
 - O **Idea**: Apply **temperature** (**T**) **on logits** to smooth or sharp output distribution
 - O **Limitation**: Require validation set
- Contextual Calibration (CC)
 - O **Idea**: Estimate test-time contextual bias via **content-free token**, such as space token
 - O **Limitation**: **inaccurate** to estimate the bias using content-free token
- Batch Calibration (BC)
 - O Idea: Estimate test-time contextual bias via a batch of unlabeled samples
 - O **Limitation**: need validation set to adjust proper **batch size**

Improve Confidence Calibration

Model	Prompt Classification									Response Classification					
	OAI	ToxiC	SimpST	Aegis	XST	HarmB	WildGT	Avg.	BeaverT	S-RLHF	HarmB	WildGT	Avg		
Llama-Guard	9.0	11.0	32.6	29.6	20.5	68.1	28.6	28.5	29.1	24.4	23.2	14.2	22.7		
+ TS	12.0	11.3	31.9	26.8	9.4	66.7	26.0	26.3	27.4	21.6	14.5	14.0	19.4		
+ CC	14.8	7.4	26.3	22.0	23.9	65.1	20.9	25.8	25.4	21.8	20.2	8.9	19.1		
+ BC	12.3	12.1	43.2	27.2	21.0	67.9	19.7	29.1	26.6	22.5	20.6	12.4	20.5		
Llama-Guard2	13.7	15.9	26.5	34.7	12.2	30.3	26.8	22.9	29.9	25.2	24.9	12.8	23.2		
+ TS	13.2	15.8	26.0	33.6	11.1	29.4	26.0	22.2	29.8	24.5	14.1	13.6	20.5		
+ CC	39.4	22.8	15.0	18.8	13.7	14.8	15.3	20.0	24.3	28.9	34.8	32.8	30.2		
+ BC	15.2	16.6	30.6	34.2	12.0	36.3	23.8	24.1	29.5	25.2	24.8	14.7	23.6		
Llama-Guard3	13.9	14.5	7.6	33.4	13.9	8.8	20.5	16.1	32.3	25.3	27.2	11.1	24.0		

Takeaway:

- In general, CC proves more effective for prompt classification and
 TS benefits response classification more.
- o **In-domain validation sets** help determine a better temperature/batch size and yield better calibration results.
- No single post-hoc calibration method fully resolves miscalibration.

									,,,				
WildGuard	33.8	19.8	4.4	12.0	5.0	6.3	19.7	14.4	23.2	23.3	12.8	15.9	18.8
+ TS	32.4	19.1	5.7	9.1	4.2	8.2	19.3	14.0	23.8	22.3	10.5	16.5	18.3
+ CC	58.7	39.0	0.2	26.5	25.5	0.1	18.6	24.1	22.8	27.9	16.2	16.1	20.8
+ BC	33.6	23.8	25.2	12.7	3.8	30.6	19.5	21.3	23.1	22.2	12.6	16.3	18.6

Thanks

• Check our paper for more details

Paper

• We release the evaluation tool and advocate for incorporating evaluation of confidence calibration when releasing future LLM-based guardrail models.

