NRGBoost:

Energy-Based Generative Boosted Trees

João Bravo Feedzai

ICLR 2025

Overview

1. Introduction

2. NRGBoost

3. Results

- 3.1 Density Modeling
- 3.2 Sampling

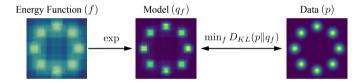
Introduction

Generative Models for Tabular Data

- Deep Learning has received the most attention
- Focus on sampling and not density estimation

Introduction

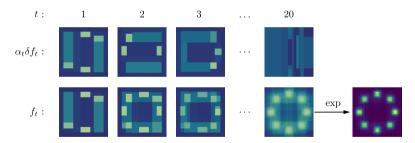
Generative Models for Tabular Data


- Deep Learning has received the most attention
- Focus on sampling and not density estimation

Our Contribution: extend Gradient-Boosted Trees to generative modeling

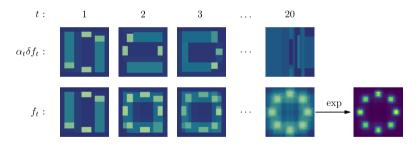
- Tree-based generative model capable of (unnormalized) density estimation
- Outperforms other generative models at inference tasks
- Competitive with Deep Learning approaches for sampling

Energy-Based Generative Boosting


Goal: Approximate a data distribution, p, with an EBM: $q_f(\mathbf{x}) = \frac{\exp(f(\mathbf{x}))}{Z[f]}$

Energy-Based Generative Boosting

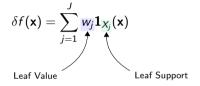
Goal: Approximate a data distribution, p, with an EBM: $q_f(\mathbf{x}) = \frac{\exp(f(\mathbf{x}))}{Z[f]}$

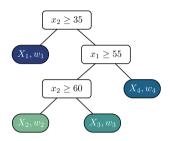

Boosting: Each round add a new δf_t to the energy function: $f_t = f_{t-1} + \alpha_t \delta f_t$

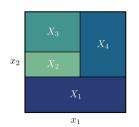
Energy-Based Generative Boosting

Goal: Approximate a data distribution, p, with an EBM: $q_f(\mathbf{x}) = \frac{\exp(f(\mathbf{x}))}{Z[f]}$

Boosting: Each round add a new δf_t to the energy function: $f_t = f_{t-1} + \alpha_t \delta f_t$

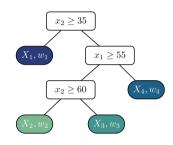


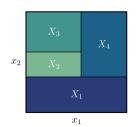

 δf_t chosen to maximize a local quadratic approximation to the log-likelihood at f_{t-1}


Newton's method in the space of energy functions

Weak Learners

Each δf is a piecewise constant function given by a binary tree

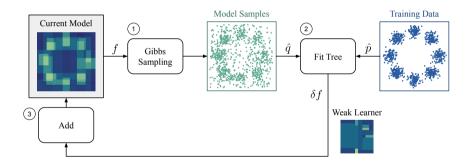

Weak Learners


Each δf is a piecewise constant function given by a binary tree

$$\delta f(\mathbf{x}) = \sum_{j=1}^J w_j \mathbf{1}_{X_j}(\mathbf{x})$$

Choose X_j and w_j that maximize a quadratic approximation to the **log-likelihood** at current iterate f:

$$X_1^*, \dots, X_J^* = \operatorname*{arg\;max}_{X_1, \dots, X_J} \underbrace{\sum_{j=1}^J \frac{P^2(X_j)}{Q_f(X_j)}}_{\mathsf{Splitting\;Criterion}}, \quad w_j^* = \frac{P(X_j^*)}{Q_f(X_j^*)} - 1$$

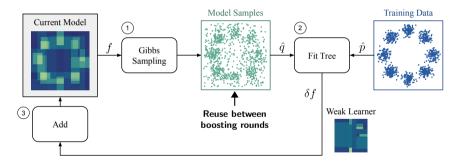


Sampling

Need to estimate two types of quantities:

• P(X): Using empirical training data

• $Q_f(X)$: Using samples drawn from the model

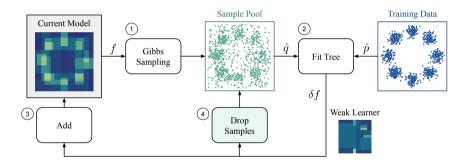


Sampling

Need to estimate two types of quantities:

• P(X): Using empirical training data

• $Q_f(X)$: Using samples drawn from the model


Model may not change significantly between consecutive rounds of boosting

Sampling

Need to estimate two types of quantities:

• P(X): Using empirical training data

• $Q_f(X)$: Using samples drawn from the model

Model may not change significantly between consecutive rounds of boosting

Use rejection sampling to retain samples from previous round that conform to new model

Inference Tasks

An EBM can be used directly for inference over **any** input variable:

$$q_f(y|\mathbf{x}) = \frac{\exp(f(y,\mathbf{x}))}{\sum_{y'} \exp(f(y',\mathbf{x}))}$$

Inference Tasks

An EBM can be used directly for inference over **any** input variable:

$$q_f(y|\mathbf{x}) = rac{\mathsf{exp}\left(f(y,\mathbf{x})
ight)}{\sum_{y'} \mathsf{exp}\left(f(y',\mathbf{x})
ight)}$$

	$R^2 \uparrow$			AUC ↑		Accuracy ↑	
	AB	СН	PR	AD	MBNE	MNIST	СТ
RFDE ARF	$\begin{array}{c} 0.071 \pm 0.096 \\ 0.531 \pm 0.032 \end{array}$	0.340 ±0.004 0.758 ±0.009	$\begin{array}{c} 0.059 \pm 0.007 \\ 0.591 \pm 0.007 \end{array}$	$\begin{array}{c} 0.862 \pm 0.002 \\ 0.893 \pm 0.002 \end{array}$	0.668 ± 0.008 0.968 ± 0.001	0.302 ±0.010	0.679 ± 0.002 0.938 ± 0.005
DEF (ISE)	$0.467 \pm \scriptstyle{0.037}$	$0.737 \; {\pm} 0.008$	0.566 ± 0.002	0.854 ± 0.003	$0.653 \pm \scriptstyle{0.011}$	$0.206 \pm \scriptstyle{0.011}$	0.790 ± 0.003
DEF (KL) NRGBoost	0.482 ± 0.027 0.547 ± 0.036	0.801 ± 0.008 0.850 ± 0.011	0.639 ± 0.004 0.676 ± 0.009	0.892 ± 0.001 0.920 ± 0.001	0.939 ± 0.001 0.974 ± 0.001	0.487 ± 0.007 0.966 ± 0.001	0.852 ± 0.002 0.948 ± 0.001

Table: Discriminative performance of different methods at inferring the value of a single target variable

Inference Tasks

An EBM can be used directly for inference over any input variable:

$$q_f(y|\mathbf{x}) = rac{\mathsf{exp}\left(f(y,\mathbf{x})
ight)}{\sum_{y'} \mathsf{exp}\left(f(y',\mathbf{x})
ight)}$$

	$R^2 \uparrow$			AUC ↑		Accuracy ↑	
	AB	СН	PR	AD	MBNE	MNIST	СТ
RFDE ARF DEF (ISE) DEF (KL) NRGBoost	$\begin{array}{c} 0.071 \pm \! 0.096 \\ 0.531 \pm \! 0.032 \\ 0.467 \pm \! 0.037 \\ 0.482 \pm \! 0.027 \\ \textbf{0.547 \pm } 0.036 \end{array}$	$\begin{array}{c} 0.340 \pm 0.004 \\ 0.758 \pm 0.009 \\ 0.737 \pm 0.008 \\ 0.801 \pm 0.008 \\ \textbf{0.850} \pm 0.011 \end{array}$	$\begin{array}{c} 0.059 \pm \! 0.007 \\ 0.591 \pm \! 0.007 \\ 0.566 \pm \! 0.002 \\ 0.639 \pm \! 0.004 \\ \textbf{0.676} \pm \! 0.009 \end{array}$	$\begin{array}{c} 0.862 \pm \! 0.002 \\ 0.893 \pm \! 0.002 \\ 0.854 \pm \! 0.003 \\ 0.892 \pm \! 0.001 \\ \hline \textbf{0.920 \pm } 0.001 \end{array}$	$\begin{array}{c} 0.668 \pm \! 0.008 \\ 0.968 \pm \! 0.001 \\ 0.653 \pm \! 0.011 \\ 0.939 \pm \! 0.001 \\ \textbf{0.974} \pm \! 0.001 \end{array}$	0.302 ±0.010 0.206 ±0.011 0.487 ±0.007 0.966 ±0.001	$\begin{array}{c} 0.679 \pm \! 0.002 \\ 0.938 \pm \! 0.005 \\ 0.790 \pm \! 0.003 \\ 0.852 \pm \! 0.002 \\ \textbf{0.948} \pm \! 0.001 \end{array}$
NGBoost XGBoost	$\begin{array}{c} 0.546 \pm & 0.040 \\ 0.552 \pm & 0.035 \end{array}$	$\begin{array}{c} 0.829 \pm &0.009 \\ 0.849 \pm &0.009 \end{array}$	$\begin{array}{c} 0.621 \pm 0.005 \\ 0.678 \pm 0.004 \end{array}$	- 0.927 ±0.000	- 0.987 ±0.000	- 0.976 ±0.002	0.971 ±0.001

Table: Discriminative performance of different methods at inferring the value of a single target variable

Inference with a Missing Feature

An EBM can also be used for inference with a missing input variable, z:

$$q_f(y|\mathbf{x}) = \frac{\sum_{z} \exp(f(y, z, \mathbf{x}))}{\sum_{y', z} \exp(f(y', z, \mathbf{x}))}$$

Model	Imputation	CH $(R^2 \uparrow)$	AD (AUC ↑)	CT (Accuracy ↑)	
XGBoost	Full Data	0.849 ±0.009	0.927 ± 0.000	0.971 ±0.001	
	Mean Median/Mode KNN (K=5)	$\begin{array}{c} -0.283 \pm & 0.107 \\ -0.117 \pm & 0.107 \\ 0.150 \pm & 0.107 \end{array}$	$\begin{array}{c} \text{N/A} \\ \text{0.914} \pm \text{0.003} \\ \text{0.910} \pm \text{0.003} \end{array}$	$\begin{array}{c} 0.610 \pm & 0.004 \\ 0.621 \pm & 0.002 \\ 0.883 \pm & 0.001 \end{array}$	
NRGBoost	Full Data	0.850 ± 0.011	0.920 ±0.001	0.948 ±0.001	
	Marginalization	0.773 ± 0.010	0.920 ± 0.001	0.923 ± 0.001	

Table: Discriminative performance for inference with a missing covariate

Sample Quality

Training Data	NRGBoost	Forest-Flow	ARF	TVAE
220:10	14928	白年等聚司	18376	A4458
48763	88329	94566	21093	40000
45958	35448	8 6 7 8 F	自电磁子学	3000
44578	31874	きょうかり	在独立面户	67269
43862	55193	医安替金属	甲基巴克曼	116600

	AB	СН	PR	AD	MBNE	MNIST	СТ
TVAE TabDDPM Forest-Flow	$\begin{array}{c} 0.971 \pm & 0.004 \\ 0.818 \pm & 0.015 \\ 0.987 \pm & 0.002 \end{array}$	$\begin{array}{c} 0.834\ \pm 0.006\\ 0.667\ \pm 0.005\\ 0.926\ \pm 0.002\\ \end{array}$	$\begin{array}{c} 0.940 \; \pm 0.002 \\ \textbf{0.628} \; \pm \textbf{0.004} \\ 0.885 \; \pm 0.002 \end{array}$	$\begin{array}{c} 0.898 \pm & 0.001 \\ 0.604 \pm & 0.002 \\ 0.932 \pm & 0.002 \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ \textbf{0.789} \pm \textbf{0.002} \\ 1.000 \pm 0.000 \end{array}$	1.000 ±0.000 - 1.000 ±0.000	$\begin{array}{c} 0.999 \pm 0.000 \\ 0.915 \pm 0.007 \\ 0.985 \pm 0.001 \end{array}$
ARF DEF (KL) NRGBoost	$\begin{array}{c} 0.975 \pm 0.005 \\ 0.823 \pm 0.013 \\ \textbf{0.625} \pm \textbf{0.017} \end{array}$	$\begin{array}{c} 0.973 \pm & 0.004 \\ 0.751 \pm & 0.008 \\ \textbf{0.574} \pm & \textbf{0.012} \end{array}$	$\begin{array}{c} 0.795 \pm & 0.008 \\ 0.877 \pm & 0.002 \\ 0.631 \pm & 0.006 \end{array}$	$\begin{array}{c} 0.992\ \pm0.000\\ 0.956\ \pm0.002\\ \textbf{0.559}\ \pm0.003\\ \end{array}$	$\begin{array}{c} 0.998 \pm & 0.000 \\ 1.000 \pm & 0.000 \\ 0.993 \pm & 0.001 \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ \textbf{0.943} \pm \textbf{0.003} \end{array}$	$\begin{array}{c} 0.989 \pm 0.001 \\ 0.999 \pm 0.000 \\ \textbf{0.724} \pm \textbf{0.006} \end{array}$

Table: AUC of an XGBoost model trained to distinguish real from generated data (lower is better)

Thank You

- **Paper:** https://arxiv.org/abs/2410.03535
- **Github:** https://github.com/ajoo/nrgboost
- PyPI: pip install nrgboost