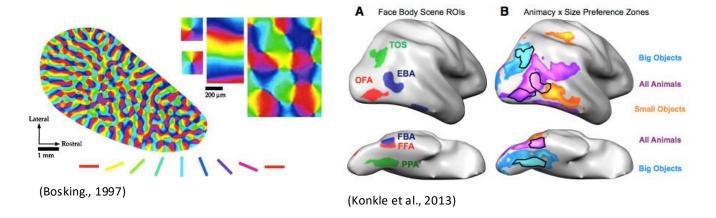


Credit-based self-organizing maps: training deep topographic networks with minimal performance degradation

Amir Ozhan Dehghani, Xinyu Qian, Asa Farahani, Pouya Bashivan

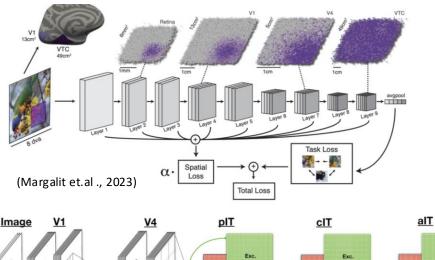
Motivation

- The brain is topographically organized: In humans and other animals, functionally similar neurons are spatially close to each other
- The current driving mechanism of topographical organization is unknown.
- We sought to understand the computational principles underlying visual topographical organizations using Deep Neural Networks.



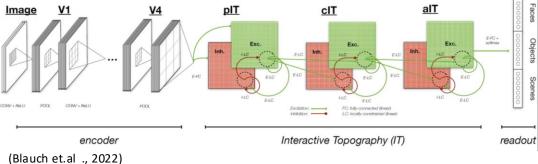
Prior Work

 Previous approaches to simulate topographical organization in DNNs involved using objective functions.



Topographic Deep Artificial Network (TDANN)

• TDANN uses an objective function that forces units' responses to be correlated as a function of their distance



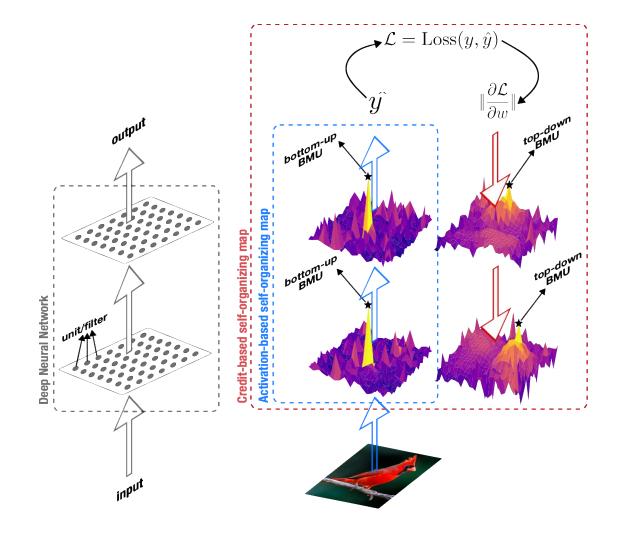
Interactive Topographic Network (ITN)

 ITN uses an objective function that penalizes longdistance connections

However, this approach often resulted in weaker performance on categorization

Our Proposal

- We propose an alternative approach based on self-organizing maps: Credit-Based Self-Organizing Maps (CB-SOM).
- Unlike the classical Kohonen's SOM, the BMU is chosen based on unit activation. CB-SOM chooses BMU based on the gradient to the objective function.
- This results in the selection of the unit with the *highest impact* on the object categorization performance.



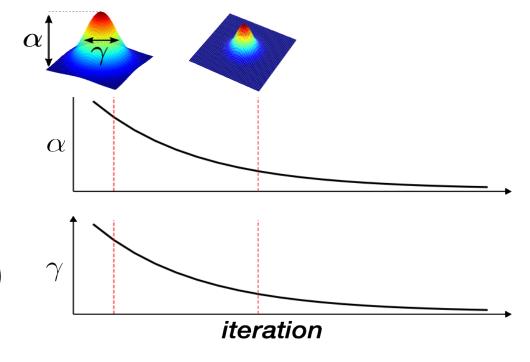
SOM Update Rule

- We enforce topographical organization by:
 - We assign 2D positional coordinates for every unit in the convolutional layer to simulate a cortical sheet
 - A best-matching unit is chosen based on the credit-based or activation-based method.
 - A neighbourhood function is constructed based on the distance of units to the BMU coordinate

$$\gamma_{c,ij}(t) = \exp\left(-\frac{\|\mathbf{p}_c - \mathbf{p}_{ij}\|^2}{2\sigma(t)^2}\right)$$

 Update weights for every unit layer using the SOM updating rule

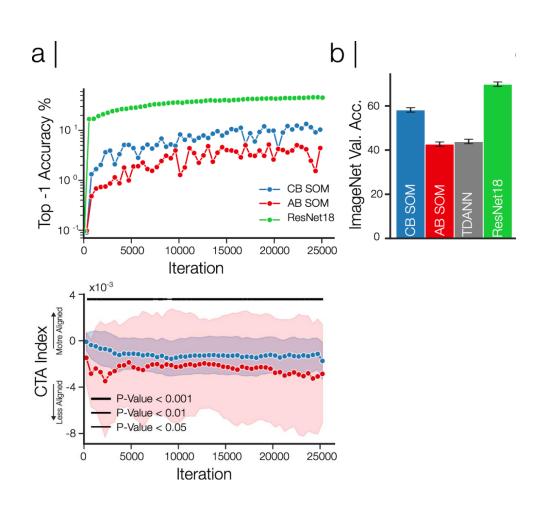
$$\mathbf{w}_{ij}(t+1) = \mathbf{w}_{ij}(t) + \alpha(t) \cdot \gamma_{c,ij}(t) \cdot (\mathbf{w}_c(t) - \mathbf{w}_{ij}(t)))$$



Results – Boost in Performance

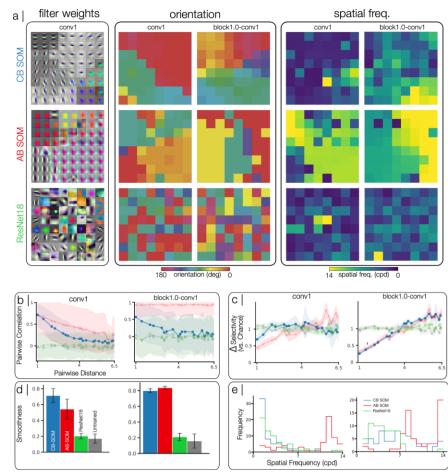
- Using our approach, the CB-SOM model significantly outperforms the AB-SOM model while preserving topographical organization.
- We quantified the impact of SOM updates on model performance in object categorization.

CB-SOM update is more aligned with the object recognition task



Results – Topographical Representation Primary Visual Cortex

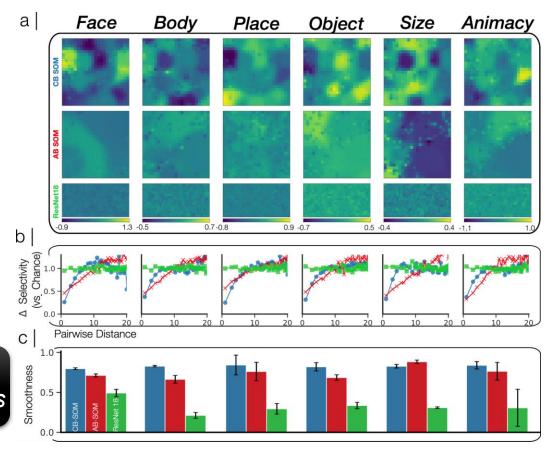
- CB-SOM replicates the topographical organization in the primary visual cortex. (i.e. orientation and spatial frequency)
- We observed an exponential decay of pairwise correlation between filters as a function of Euclidean distance.
- Resulting in smooth transition between units selectivity



Results – Topographical Representation Inferior Temporal Visual Cortex

- CB-SOM replicates the topographical organization in higher-level visual regions according to category selectivity. (i.e. Face, Body regions)
- CB-SOM exhibits higher smoothness and category-selective regions.

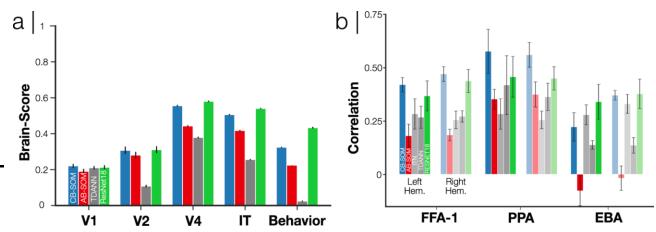
CB-SOM can replicate topographical organization in the early and late visual areas



Results - Model-to-Brain Similarity

 We compared the model's similarity to neural data for the visual cortex for macaques (Brain-Score) and humans (NSD)

 CB-SOM shows substantially higher alignment with neural activity in the visual cortex of both macaques (Brain-Score) and humans (NSD



CB-SOM can develop representations that closely resemble primates' neural representations

Discussion

- Top-down vs Bottom Up:
 - CB-SOM selects winner units based on their contribution to reducing a task-relevant objective function (top-down).
- Principles of topographical organization:
 - Our results indicate that topographical organization emerges not just from wiring cost minimization but also through selforganizing processes driven by task relevance.
- Universal topography across layers and models:
 - Unlike many models that focus on a single visual area or a limited range of layers, CB-SOM induces topography
 throughout all network layers with minimal loss in task performance for both ResNet18 and CorNet-S architectures.

Acknowledgment



Asa Farahani

Dr. Pouya Bashivan

Amirozhan.dehghani@mail.mcgill.ca

