In-Context Editing: Learning Knowledge from Self-Induced Distributions

Siyuan Qi ¹, Bangcheng Yang ¹, Kailin Jiang ^{1,2}, Xiaobo Wang ¹, Jiaqi Li ¹, Yifan Zhong ^{1,3}, Yaodong Yang ^{1,3}, Zilong Zheng ¹

¹ State Key Laboratory of General Artificial Intelligence, BIGAI

² University of Science and Technology of China ³ Peking University

| Knowledge Editing: Setup

Objective: incorporate new facts into a language model M_{θ}

Notation: query-response pairs $\{q_i, x_i^*\}$, original response x

Example: q: "Did Messi win the FIFA world cup?"

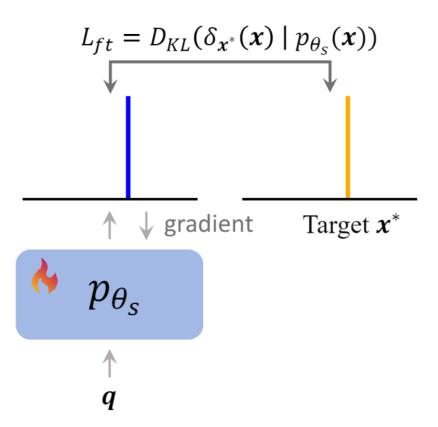
x: "No".

 x^* : "Yes, in 2022".

Typically done by maximizing the probability $p_{\theta}(x^*|q)$.

| Problem with Fine-Tuning

Problem: overfitting



In deep learning, a large batch size helps mitigate overfitting.

Can we find a target **distribution** that is close to x^* , and contains other useful information?

| Fine-Tuning with Sampling

We can sample a distribution!

Employ a softer distribution generated by the model itself in a bootstrapping manner:

$$\mathcal{L}_{ft}^* = D_{KL}(\delta_{\mathbf{x}^*}(x_{1:m})p_{\theta}(x_{>m}|[\mathbf{q},\mathbf{x}^*]) \mid\mid p_{\theta}(\mathbf{x}|\mathbf{q})).$$

Observation 1. The objective of fine-tuning with samples **is equivalent to** the objective of traditional fine-tuning, i.e.,

$$\mathcal{L}_{ft}^* = \mathcal{L}_{ft}$$

This implies that the model cannot learn and improve on its own without external information!

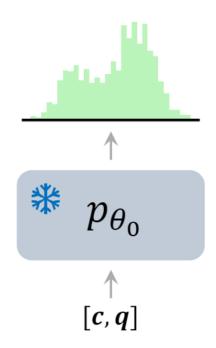
| In-Context Learning: Language Models are Few Shot Learners

LLM can perform a task just by conditioning on input-output examples, without optimizing any parameters.

Example: c: "Messi won the world cup in 2022."

q: "Has Messi won the world cup?"

x: "Yes, in 2022".



| In-Context Editing (ICE)

We need to introduce extra information that

- Guides the model towards a new distribution that aligns with the target
- Maintains similarity to its original distribution

Create the target distribution by adding a context prompt **c**:

$$\mathcal{L}_{ICE} = D_{KL}(p_{\theta}(\mathbf{x}|[\mathbf{c},\mathbf{q}]) \mid\mid p_{\theta}(\mathbf{x}|\mathbf{q})).$$

The combined objective is:

$$\mathcal{L} = \mathcal{L}_{\mathrm{FT}} + \lambda \mathcal{L}_{\mathrm{ICE}},$$

Framework

* Frozen Tuned

c: context q: query x: model output x^* : target output

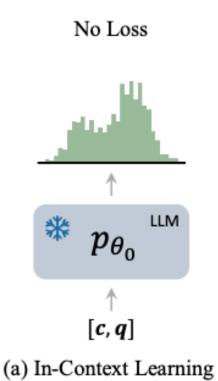
s: step θ_0 : initial params θ_s : optimized params

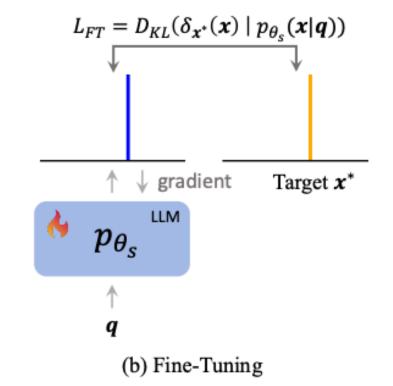
Example query q: Has Messi won the world cup?

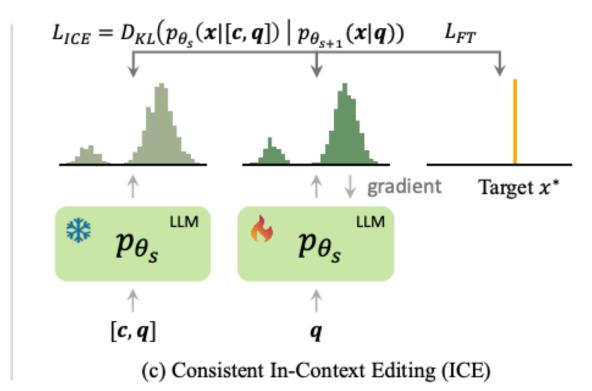
Context c: Messi won the world cup in 2022.

Target output x^* : Yes, in 2022.

Original model output x : No.







| Experiments: Single Edits

Table 1: Main results on knowledge insertion and question-answering datasets of Llama2-7b-chat.

	WikiData _{recent}					ZsRE				
	Edit Succ. ↑	Portability ↑	Locality ↑	Fluency ↑	$\overline{ extbf{PPL}_r\downarrow}$	Edit Succ. ↑	Portability \(\ \)	Locality ↑	Fluency ↑	$\overline{ extbf{PPL}_r\downarrow}$
ROME	97.25	36.58	30.40	581.00	107.47	96.66	52.90	26.61	573.02	53.88
MEMIT	97.03	37.00	29.28	573.06	87.17	95.61	52.73	24.79	563.42	38.67
FT-L	45.63	34.73	34.80	558.91	<u>68.92</u>	43.60	43.90	51.38	560.94	30.36
FT-M	100.00	<u>59.28</u>	<u>41.54</u>	587.17	70.64	100.00	<u>54.47</u>	<u>53.84</u>	580.10	<u>27.33</u>
ICE	100.00	61.02	46.39	<u>585.58</u>	34.08	100.00	55.52	56.97	562.70	15.50

Table 2: Main results on knowledge modification datasets of Llama2-7b-chat.

	WikiBio				${\bf WikiData}_{counterfact}$					
	Edit Succ. ↑	Locality ↑	Fluency ↑	$\overline{\mathbf{PPL}_r\downarrow}$	Edit Succ. ↑	Portability \(\ \)	Locality ↑	Fluency ↑	$\overline{\mathbf{PPL}_r\downarrow}$	
ROME	95.83	68.38	617.67	3.70	98.68	42.45	21.13	<u>585.40</u>	109.97	
MEMIT	94.54	<u>69.96</u>	616.65	3.51	98.13	44.16	19.48	576.26	122.48	
FT-L	59.41	28.94	615.50	1.89	36.13	29.37	38.37	566.55	89.24	
FT-M	100.00	35.34	618.12	3.67	100.00	<u>72.39</u>	<u>40.76</u>	586.80	<u>54.71</u>	
ICE	99.88	70.60	617.88	2.15	100.00	73.49	45.88	583.29	18.95	

| Thanks!

Takeaway:

ICE provides a framework for knowledge editing in language models. It leverages incontext learning to induce target distributions that ensure competitive accuracy and adaptability, all while preserving model integrity through continuous updates.