Difference-of-Submodular Bregman Divergence

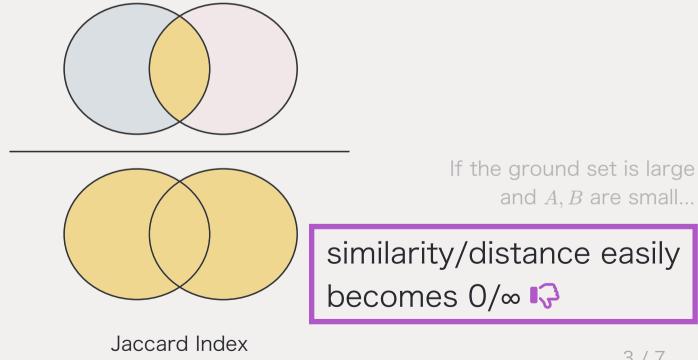
Amasanari Kimura, Takahiro Kawashima, Tasuku Soma, Hideitsu Hino

@ ICLR 2025

Distance Between Subsets

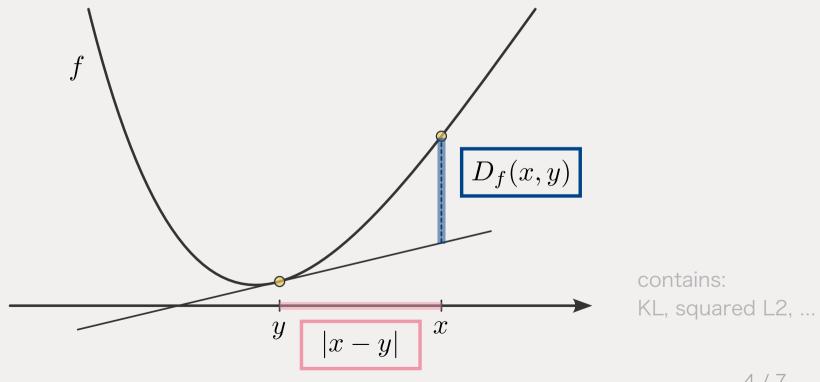
Numerous choices for measuring the distance/similarity between two sets

$D_{VeR} = \frac{(b+c)}{4(a+b+c+d)}$	(23)
$D_{\text{SZZEDAFFERENCE}} = \frac{(b+c)^2}{(a+b+c+d)^2}$	(24)
$D_{SEAPEDNFFRENCE} = \frac{n(b+c) - (b-c)^2}{(a+b+c+d)^2}$	(25)
$D_{\text{paiteandoferance}} = \frac{4bc}{(a+b+c+d)^2}$	(26)
$D_{\text{LENCEMWILLIAMS}} = \frac{b+c}{(2a+b+c)}$	(27)
$D_{\text{SREYACURISS}} = \frac{b+c}{(2a+b+c)}$	(28)
$D_{MELLOVICE} = 2\sqrt{1 - \frac{a}{\sqrt{(a+b)(a+c)}}}$	(29)
$D_{\text{CHORD}} = \sqrt{2\left(1 - \frac{a}{\sqrt{(a+b)(a+c)}}\right)}$	(30)
$S_{COEON} = \frac{a}{\sqrt{(a+b)(a+c)^2}}$	(31)
$S_{GU,BERT,RWZLLS} = \log a - \log n - \log(\frac{a+b}{n}) - \log(\frac{a+c}{n})$	(32)
$S_{OCHMd-I} = \frac{a}{\sqrt{(a+b)(a+c)}}$	(33)
$S_{FOARESV} = \frac{na}{(a+b)(a+c)}$	(34)
$S_{FOSSOM} = \frac{n(a-0.5)^2}{(a+b)(a+c)}$	(35)
$S_{SORGENFRES} = \frac{a^2}{(a+b)(a+c)}$	(36)
$S_{MOLINITOAD} = \frac{a}{0.5(ab + ac) + bc}$	(37)
$S_{OTSUK6} = \frac{a}{((a+b)(a+c))^{0.5}}$	(38)
$S_{MCCONNEUGAMEY} = \frac{a^2 - bc}{(a+b)(a+c)}$	(39)
$S_{\text{TARMXD}} = \frac{na - (a+b)(a+c)}{na + (a+b)(a+c)}$	(40)
$S_{_{XXZ,CZYNSSZ-9}} = \frac{\frac{\alpha}{2}\left(2a+b+c\right)}{\left(a+b\right)\left(a+c\right)}$	(41)
$S_{\textit{DRIVERBLEMOGRAPS}} = \frac{a}{2}(\frac{1}{a+b} + \frac{1}{a+c})$	(42)
$S_{\text{JONINSON}} = \frac{a}{a+b} + \frac{a}{a+c}$	(43)
$S_{DENNIS} = \frac{ad - bc}{\sqrt{n(a+b)(a+c)}}$	(44)
$S_{\text{SIMPSON}} = \frac{a}{\min(a+b, a+c)}$	(45)
$S_{\text{ARMINARAUDUST}} = \frac{a}{\max(a+b,a+c)}$	(46)


$S_{\text{MAGERAM-GOREN}} = \frac{a}{\sqrt{(a+b)(a+c)}} - \frac{\max(a+b,a+c)}{2}$	(47)
$S_{FORBES-\vec{a}} = \frac{na - (a+b)(a+c)}{n\min(a+b,a+c) - (a+b)(a+c)}$	(48)
$S_{SOM,d,ANNE,dNI-dV} = \frac{\frac{a}{(a+b)} + \frac{a}{(a+c)} + \frac{d}{(b+d)} + \frac{d}{(b+d)}}{4}$	(49)
$S_{COWZR} = \frac{a+d}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}$	(50)
$S_{PEARSON-I} = \chi^2 \text{ where } \chi^2 = \frac{n(ad - bc)^2}{(a+b)(a+c)(c+d)(b+d)}$	(51)
$S_{PEARSON-H} = \left(\frac{\chi^2}{n + \chi^2}\right)^{1/2}$	(52)
$S_{PEARSONN} = \left(\frac{\rho}{n+\rho}\right)^{1/2} \text{ where } \rho = \frac{ad-bc}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}$	(53)
$S_{PEARSON ANDERON-I} = \frac{ad - bc}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}$	(54)
$S_{PE,GRSONARREZON-H} = Cos(\frac{\pi\sqrt{bc}}{\sqrt{ad}+\sqrt{bc}})$	(55)
$S_{SOKALASNEATN-SN} = \frac{a+d}{b+c}$	(56)
$S_{SOK.6LACSNE.6TH-V} = \frac{ad}{(a+b)(a+c)(b+d)(c+d)^{0.5}}$	(57)
$S_{COLE} = \frac{\sqrt{2}(ad - bc)}{\sqrt{(ad - bc)^2 - (a + b)(a + c)(b + d)(c + d)}}$	(58)
$S_{STILES} = \log_{10} \frac{n(ad - bc - \frac{n}{2})^2}{(a+b)(a+c)(b+d)(c+d)}$	(59)
$S_{OCMMM-B} = \frac{ad}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}$	(60)
$S_{\text{PULEQ}} = \frac{ad - bc}{ad + bc}$	(61)
$D_{\text{TULEQ}} = \frac{2bc}{ad + bc}$	(62)
$S_{\text{NZEw}} = \frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}$	(63)
$S_{\text{KULCZYNSKI-I}} = \frac{a}{b+c}$	(64)
$S_{ZKNIMOTO} = \frac{a}{(a+b)+(a+c)-a}$	(65)
$S_{DESPERSON} = \frac{ad - bc}{(a + b + c + d)^2}$	(66)
$S_{HAMANN} = \frac{(a+d)-(b+c)}{a+b+c+d}$	(67)
$S_{MCHARL} = \frac{4(ad - bc)}{(a + d)^2 + (b + c)^2}$	(68)
$\begin{split} S_{GOODMAVALEHSKel} &= \frac{\sigma - \sigma'}{2n - \sigma'} \text{ where } \\ \sigma &= \max(a,b) + \max(c,d) + \max(c,c) + \max(b,d), \\ \sigma' &= \max(a+c,b+d) + \max(a+b,c+d) \end{split}$	(69)

(70)
(71)
(72)
(73)
(74)
(75)
(76)

from Choi et al. (2010)


Issue of Existing Metrics

Most of the existing metrics are based on counting $A \cap B$, $A \cup B$, ...

Bregman Divergence

Bregman divergence defines the dissimilarity between two points based on a convex function.

Submodular Bregman Divergence

Submodular Bregman Divergence [lyer & Bilmes, 2012]

- Measure the dissimilarity between two finite sets
- Use a <u>submodular function</u> as the analog of the convex function in Bregman divergence
- Contains many representative metrics as special cases
 - > Hamming distance, Precision, Recall, ···

Submodular function: $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$

Contribution

(DBD)

Our proposal: Difference-of-Submodular Bregman Divergence

> Extension of the submodular Bregman divergence

Two major contributions:

- Generalize the submodular Bregman divergence to use nonsubmodular functions
- Developed an NN-based framework to learn the divergence from set-structured data
 - > permutation-invariant NNs

Result on Point Cloud Retrieval (Partial)

trained only on CPUs!

DBDs based on extremely simple MLPs are competitive with the SoTA methods

> Shows the effectiveness of our framework >

Query set	Top-5 retrieval results				
*	4				
		A			

Ou	r method Method	mAP
Ou	grow-DBD w/ decomposition shrink-DBD w/ decomposition bar-DBD w/ decomposition grow-DBD w/o decomposition shrink-DBD w/o decomposition bar-DBD w/o decomposition Densepoint (Liu et al., 2019)	$ \begin{vmatrix} 90.13(\pm 0.75) \\ 90.20(\pm 0.77) \\ 86.09(\pm 0.85) \\ 88.12(\pm 0.80) \\ 88.20(\pm 0.81) \\ 83.57(\pm 0.97) \\ \hline 89.68(\pm 0.88) $
	MVTN (Hamdi et al., 2021)	92.9*