Stochastic Bandits Robust to Adversarial Attacks

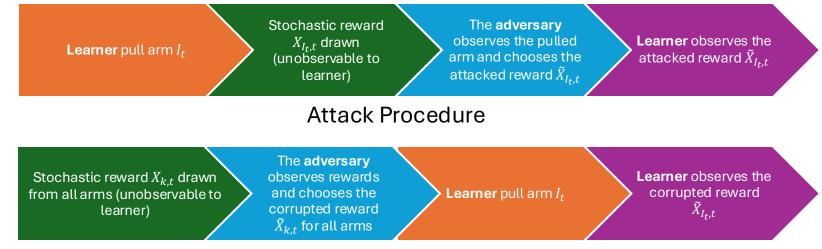
Xuchuang Wang¹, Maoli Liu², Jinhang Zuo³,
Xutong Liu⁴, John C.S. Lui², Mohammad Hajiesmaili¹

¹ University of Massachusetts, Amherst, ² Chinese University of Hong Kong

³ City University of Hong Kong, ⁴ Carnegie Mellon University

Model: Bandits with Adversarial Attacks

- K arms, each with a stochastic reward X_k with unknown mean μ_k
 - $\Delta_k \coloneqq \mu_{k^*} \mu_k$ where $k^* = \arg\max_k \mu_k$
- T decision rounds. Regret: $R_T \coloneqq T\mu_{k^*} \sum_{t=1}^T \mu_{I_t}$
- Total attack budget: $C \coloneqq \sum_{t=1}^{T} \left| X_{k,t} \tilde{X}_{k,t} \right|$



Corruption Procedure

Algorithms for Known Attack Budget

Known Attack Budget

SE-WR Stop Cond. SE-WR-Stop
$$O\left(\sum_{k \neq k^*} \frac{\log T}{\Delta_k} + KC\right)$$

SE-WR: Successive Elimination with Wide Confidence Radius

Standard CR:
$$\mu_k \in \left(\hat{\mu}_k - \sqrt{\frac{\log^{2KT} \frac{1}{\delta}}{N_k}}, \hat{\mu}_k + \sqrt{\frac{\log^{2KT} \frac{1}{\delta}}{N_k}}\right)$$
Wide CR: $\mu_k \in \left(\hat{\mu}_k - \sqrt{\frac{\log^{2KT} \frac{1}{\delta}}{N_k}} - \frac{C}{N_k}, \hat{\mu}_k + \sqrt{\frac{\log^{2KT} \frac{1}{\delta}}{N_k}} + \frac{C}{N_k}\right)$
Improved regret analysis upon Lykouris et al. (2018, Theorem 1)

SE-WR-Stop: SE-WE with Stop Condition

Option a: Stop when $N_k \leq \frac{T}{K} + C \sqrt{\frac{T}{K \log \frac{KT}{\delta}}}$ Stop Cond.

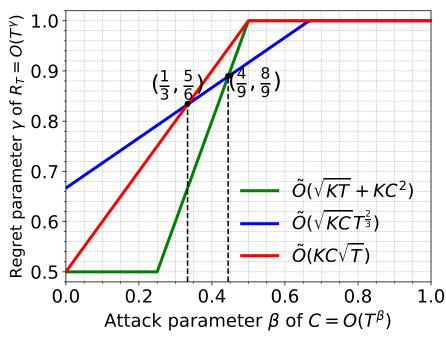
 $R_T \leq O\big(\sqrt{KT\log KT} + KC\big)$ Option b: Step when $N_k \leq \frac{T}{K}$

 $R_T \le O\left(\sqrt{KT(\log KT + C)}\right)$

Algorithms for Unknown Attack Budget



- ② An additive regret bound is obtained by phased-based elimination with a wide confidence interval (PE-WR).
- Two multiplicative bounds are obtained via a model selection technique from Pacchiano et al. (2020, Theorem 5.3).



Additive vs. Multiplicative Bounds

Results: Regret Lower Bounds

- For known attack budget C
 - General: $\Omega(KC)$
 - Gap-dependent: $\Omega\left(\sum_{k} \frac{\log T}{\Delta_{k}} + KC\right)$
 - Gap-independent: $\Omega(\sqrt{KT} + KC)$
- For unknown attack budget C
 - Additive bound: $\Omega(T^{\alpha} + C^{\frac{1}{\alpha}})$
 - Multiplicative bound: $\Omega(C^{\frac{1}{\alpha}-1}T^{\alpha})$

All upper bounds are tight to some logarithmic factors.

Thank you!

Simulations

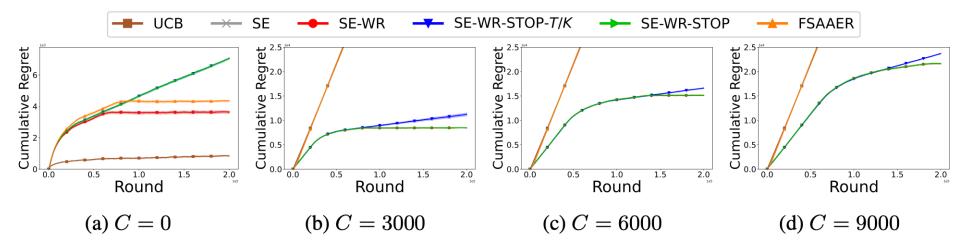


Figure 3: Regret comparison of algorithms with *known* attack budgets when varying budget C

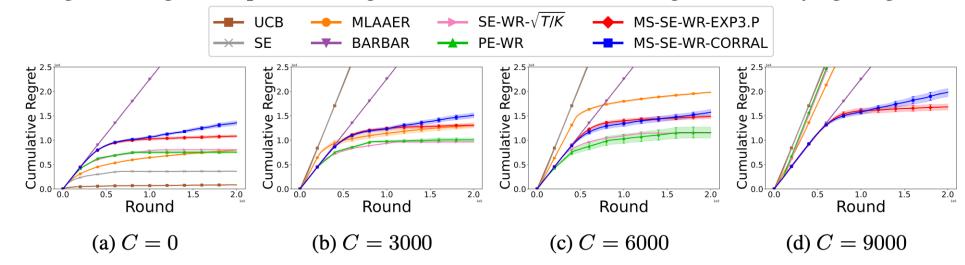


Figure 4: Regret comparison of algorithms with *unknown* attack budgets when varying budget C