







# **UniMatch: Universal matching from Atom to Task** for Few-shot Drug Discovery





Ruifeng Li, Mingqian Li, Wei Liu, Yuhua Zhou, Xiangxin Zhou, Yuan Yao, Qiang Zhang, Hongyang Chen

### **Motivation**

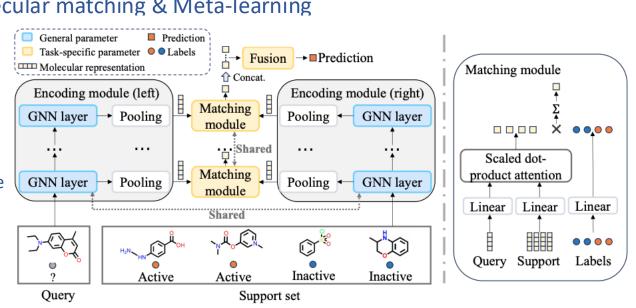
- Different levels of structural information contribute to distinct molecular properties.
- > Matching Learning is useful in few-shot learning task.

| Atom                                                                            |                 | Substructure                                         |         | Molecule                                                 |                |
|---------------------------------------------------------------------------------|-----------------|------------------------------------------------------|---------|----------------------------------------------------------|----------------|
| Hydrogen<br>Fluoride                                                            | Ammonia         | Dodecane                                             | Ethanol | Water                                                    | Carbon dioxide |
| н <del>- (</del> F)>                                                            | NH <sub>3</sub> | \$NNP                                                | OH      | HOH                                                      | (o=c=0         |
| 1 Acidity 0                                                                     |                 | 1 Hydrophobicity 0                                   |         | 1 Boiling point 0                                        |                |
| Fluorine and nitrogen affect molecular acidity and basicity, respectively.  (a) |                 | Hydroxyl groups affect the molecular hydrophobicity. |         | The whole structures affect the molecular boiling point. |                |

#### Contribution

- > We introduce a universal matching approach that spans from the atoms level to the task level for few-shot drug discovery.
- > We propose an explicit hierarchical molecular matching mechanism that integrates information from atoms to higher-level structures.

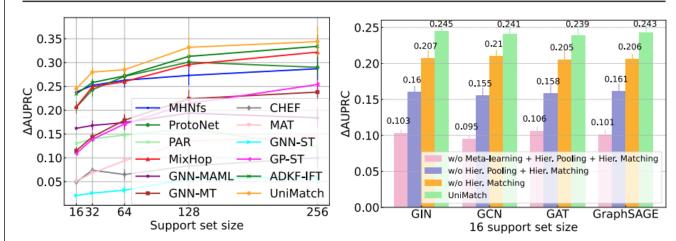
## **Universal Matching: Bridging Data & Task:**


#### Hierarchical molecular matching & Meta-learning

#### Model

- Encoding Module.
- Matching Module.
- > Fusion.

## Training and Inference


- > Inner Loop.
- Outer Loop.



## **Benchmark Results and Downstream Applications**

- State-of-the-Art MPP Prediction on MoleculeNet and FS-Mol Benchmark.
- Validated in cross-domain experiment on Meta-MolNet Benchmark.

| Method                                | Tox21 (12) ↑                       | SIDER (27) ↑                       | MUV (17) ↑                         | ToxCast (617) ↑                    |
|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| CHEF (Adler et al., 2020)             | $61.97 \pm 0.65$                   | $57.34 \pm 0.82$                   | $53.17 \pm 4.21$                   | $56.52 \pm 1.24$                   |
| MixHop (Abu-El-Haija et al., 2019)    | $78.14 \pm 0.33$                   | $72.01 \pm 0.87$                   | $78.04 \pm 3.01$                   | $77.19 \pm 0.93$                   |
| Siamese (Koch et al., 2015)           | $80.40 \pm 0.35$                   | $71.10 \pm 4.32$                   | $59.59 \pm 5.13$                   | -                                  |
| ProtoNet (Snell et al., 2017)         | $74.98 \pm 0.32$                   | $64.54 \pm 0.89$                   | $65.88 \pm 4.11$                   | $63.70 \pm 1.26$                   |
| MAML (Finn et al., 2017)              | $80.21 \pm 0.24$                   | $70.43 \pm 0.76$                   | $63.90 \pm 2.28$                   | $66.79 \pm 0.85$                   |
| TPN (Liu et al., 2018)                | $76.05 \pm 0.24$                   | $67.84 \pm 0.95$                   | $65.22 \pm 5.82$                   | $62.74 \pm 1.45$                   |
| EGNN (Kim et al., 2019)               | $81.21 \pm 0.16$                   | $72.87 \pm 0.73$                   | $65.20 \pm 2.08$                   | $63.65 \pm 1.57$                   |
| IterRefLSTM (Altae-Tran et al., 2017) | $81.10 \pm 0.17$                   | $69.63 \pm 0.31$                   | $45.56 \pm 5.12$                   | -                                  |
| PAR (Wang et al., 2021)               | $82.06 \pm 0.12$                   | $\textbf{74.68} \pm \textbf{0.31}$ | $66.48 \pm 2.12$                   | $69.72 \pm 1.63$                   |
| ADKF-IFT (Chen et al., 2023)          | $82.43 \pm 0.60$                   | $67.72 \pm 1.21$                   | $\textbf{98.18} \pm \textbf{3.05}$ | $72.07 \pm 0.81$                   |
| MHNFs (Schimunek et al., 2023)        | $80.23 \pm 0.84$                   | $65.89 \pm 1.17$                   | $73.81 \pm 2.53$                   | $74.91 \pm 0.73$                   |
| UniMatch (Ours)                       | $\textbf{82.62} \pm \textbf{0.43}$ | $68.13 \pm 1.54$                   | $79.40 \pm 3.14$                   | $\textbf{77.74} \pm \textbf{0.75}$ |
| Pre-GNN (Hu et al., 2020)             | $82.14 \pm 0.08$                   | $73.96 \pm 0.08$                   | $67.14 \pm 1.58$                   | $73.68 \pm 0.74$                   |
| GNN-MAML (Guo et al., 2021)           | $82.97 \pm 0.10$                   | $75.43 \pm 0.21$                   | $68.99 \pm 1.84$                   | -                                  |
| Pre-PAR (Wang et al., 2021)           | $84.93 \pm 0.11$                   | $78.08 \pm 0.16$                   | $69.96 \pm 1.37$                   | $75.12 \pm 0.84$                   |
| Pre-ADKF-IFT (Chen et al., 2023)      | $86.06 \pm 0.35$                   | $70.95 \pm 0.60$                   | $\textbf{95.74} \pm \textbf{0.37}$ | $76.22 \pm 0.13$                   |
| Pre-UniMatch (Ours)                   | $\textbf{86.35} \pm \textbf{0.13}$ | $\textbf{80.34} \pm \textbf{0.45}$ | $86.35 \pm 0.76$                   | $\textbf{81.63} \pm \textbf{0.73}$ |

