LEARNING TO SEARCH FROM DEMONSTRATION SEQUENCES

Dixant Mittal, Liwei Kang, Wee Sun Lee

INTRODUCTION

Search and Planning

are fundamental for complex reasoning tasks

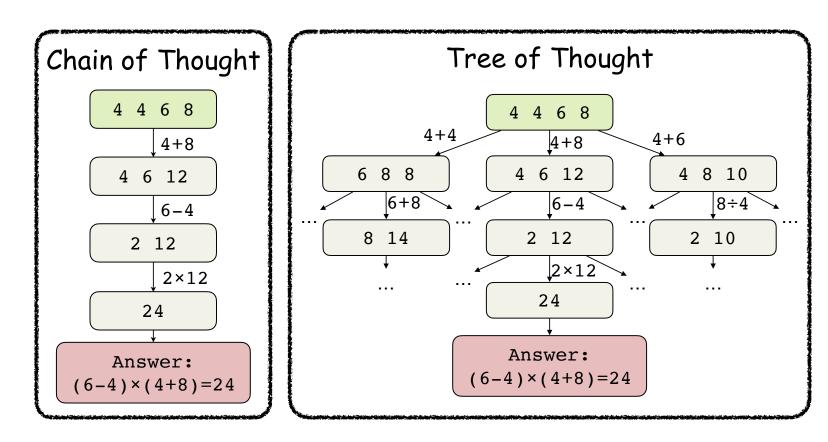
Data is Often Limited

in real-world and all we may have is a collection of

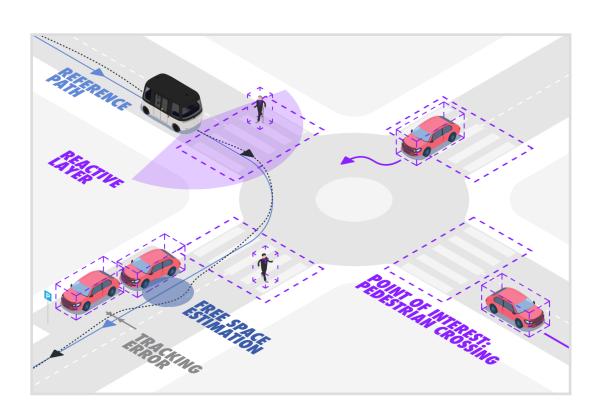
Demonstration Sequences

Learning to Search from Demonstrations is tricky because:

- Limited state space coverage
- No exploration
- Compounding Errors for planning



Reasoning in LLMs



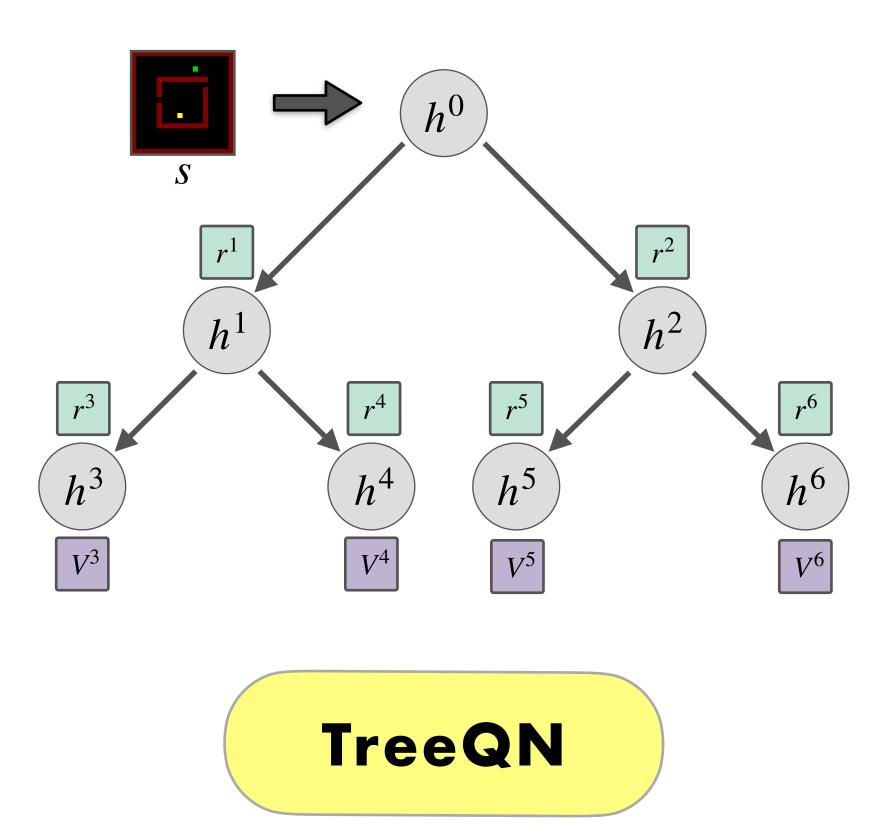
Real World
Autonomous Driving

EXISTING APPROACHES

Search Tree as Parametric Policy and directly learn the mapping from state to action

TreeQN

expands the full search tree upto a fixed depth and backups the value to the root node



TREEQN: STRENGTHS & LIMITATIONS

STRENGTHS

Planning inductive bias

No dependency on Simulator

LIMITATIONS

TreeQN is exponential in depth

Infeasible to perform deeper search

Performance suffers in complex problems

DIFFERENTIABLE TREE SEARCH NETWORK (D-TSN)

Modular Neural Network Architecture

that comprises of several learnable submodules

Algorithmic Inductive Bias

of a flexible and scalable best-first tree search algorithm

Learnt World Model

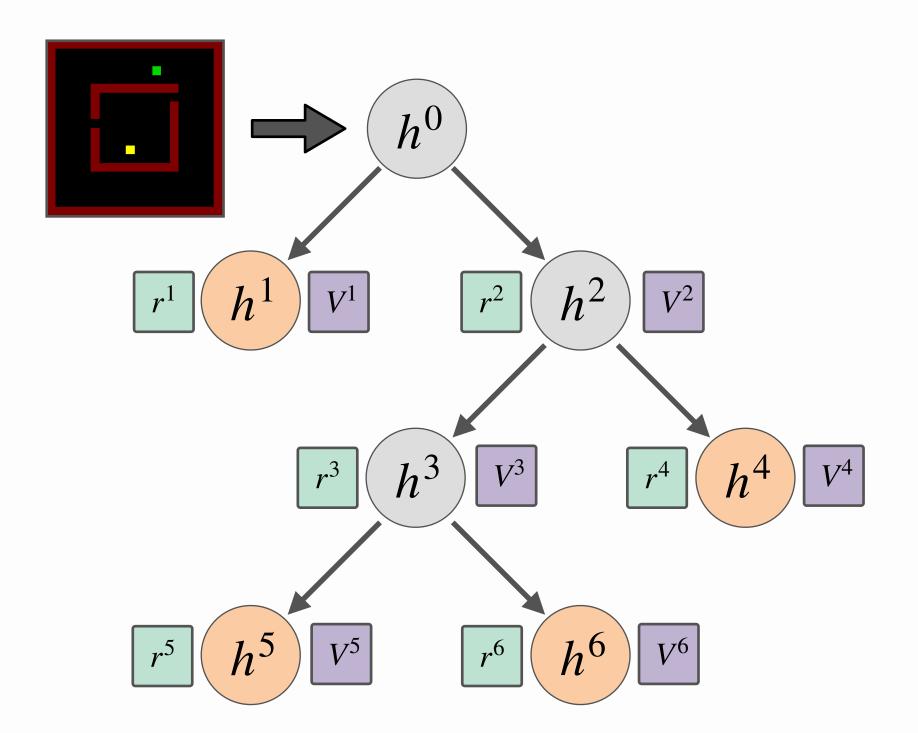
that is trained to be useful for the online search, even if inaccurate

Joint Optimisation

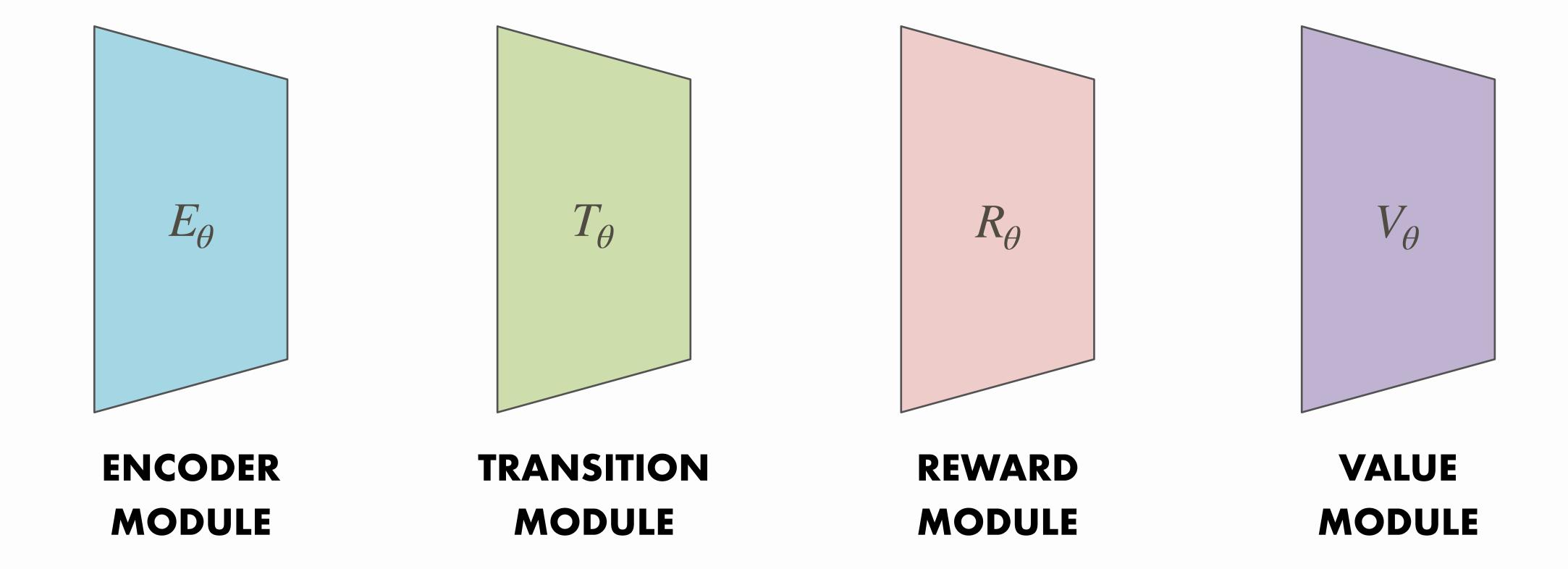
Trains the search and world model submodules jointly

Additional Technical Details

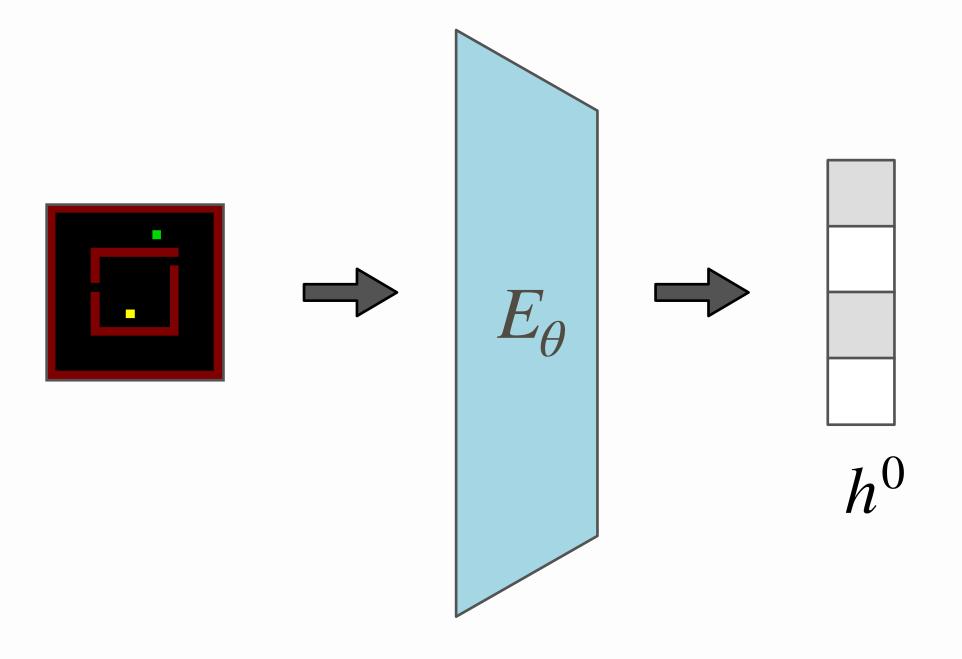
like Tree Expansion Policy and Telescopic Sum for Variance Reduction

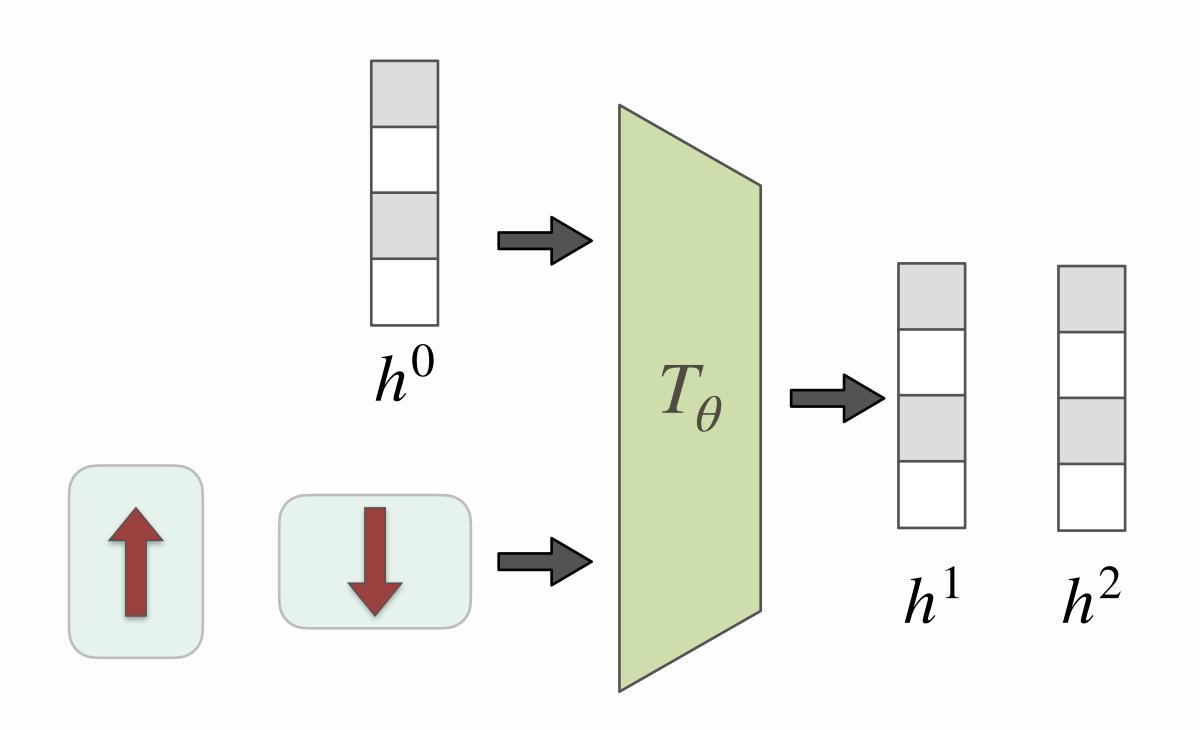


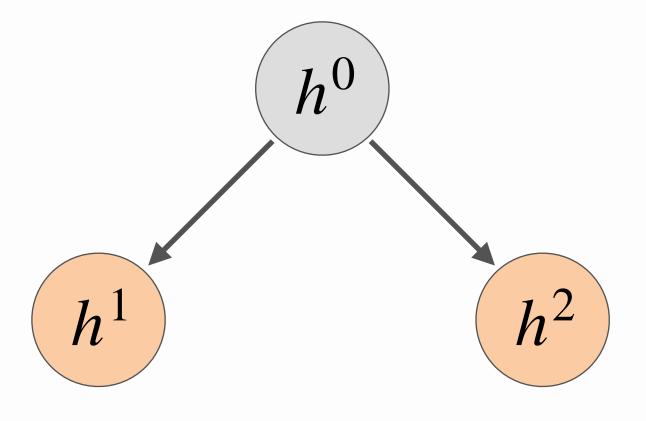
D-TSN: SUBMODULES

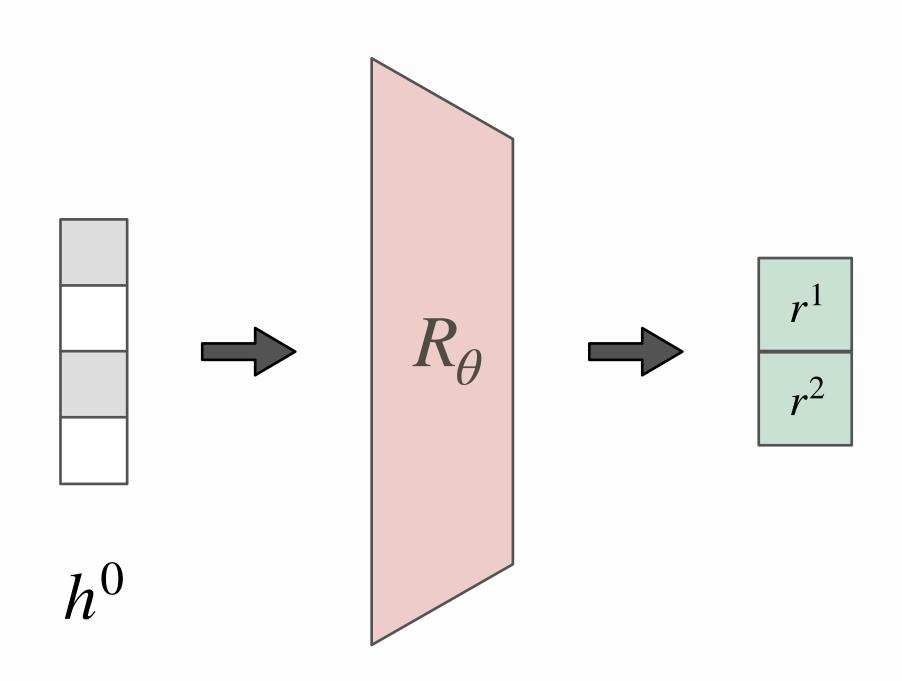


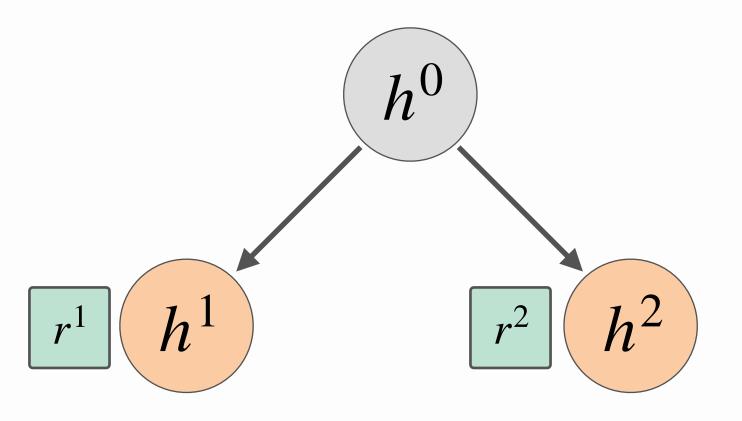
D-TSN: ENCODING

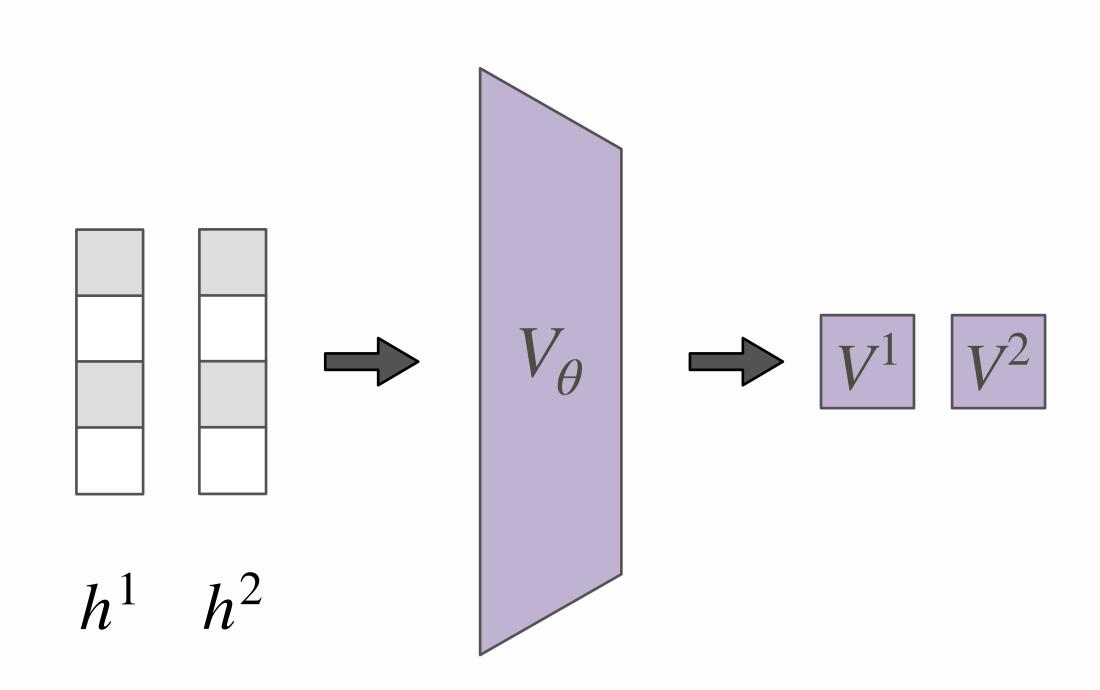


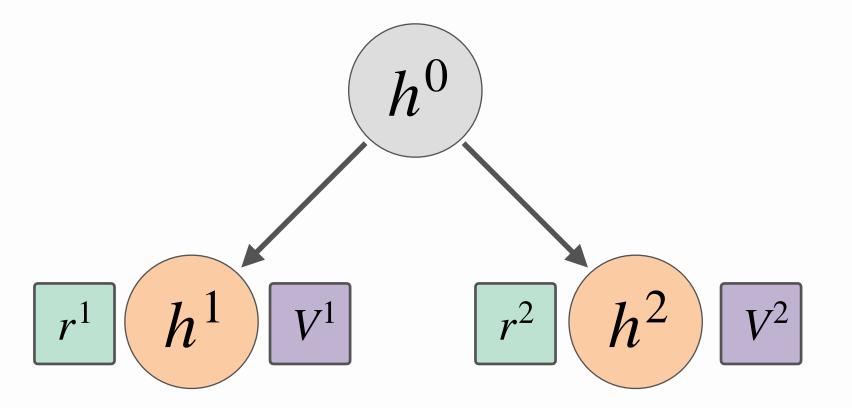










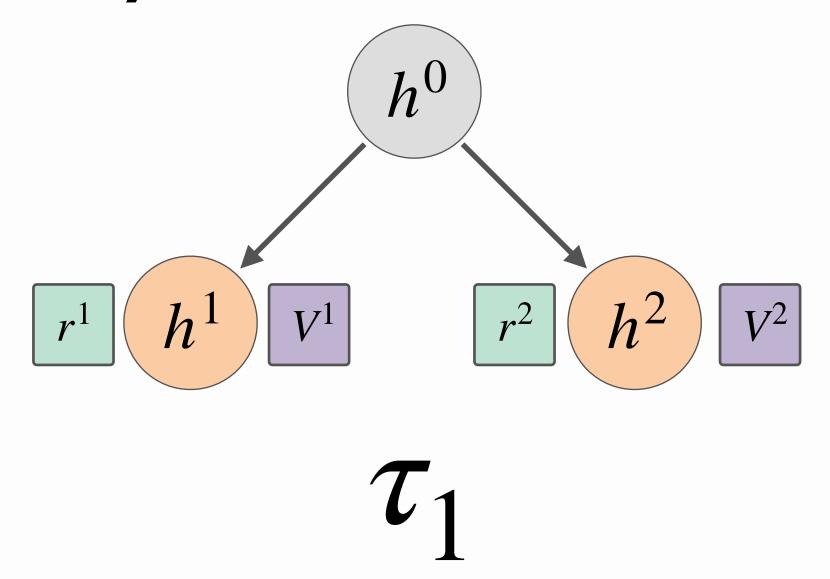


Stochastic Tree Expansion Policy

$$n \sim \pi(\tau)$$

$$\pi(\tau_1) = \mathbf{softmax}\left(h^1 \quad h^2\right)$$

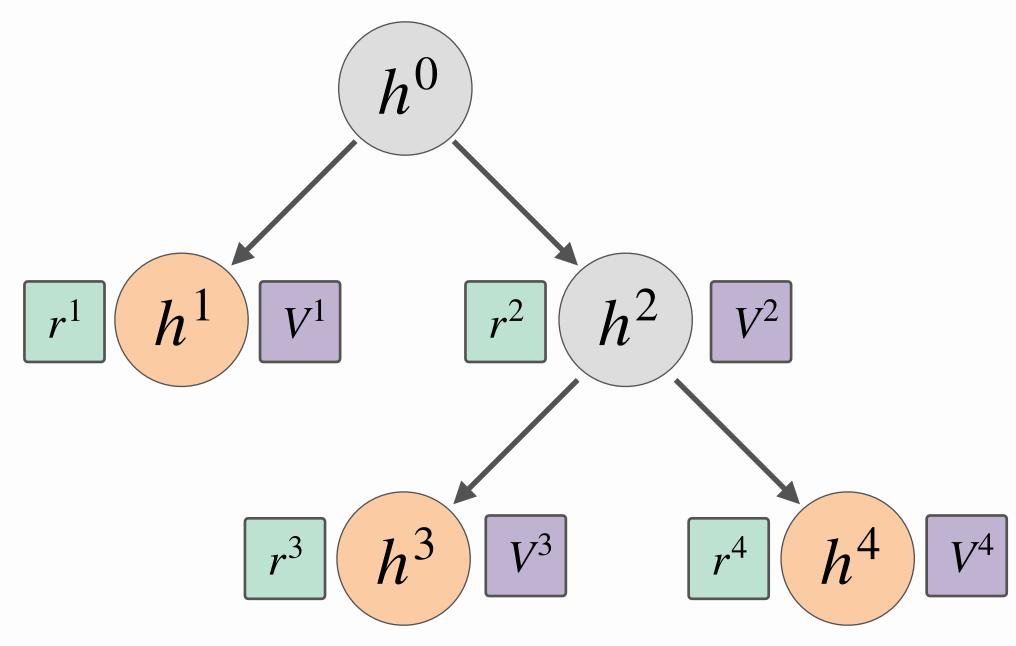
$$= \mathbf{softmax} \begin{pmatrix} r^1 + V^1 \\ r^2 + V^2 \end{pmatrix}$$



Stochastic Tree Expansion Policy

$$n \sim \pi(\tau)$$

$$\pi(\tau_2) = \mathbf{softmax}\left(\begin{array}{c} h^1 \\ h^3 \end{array}\right)$$



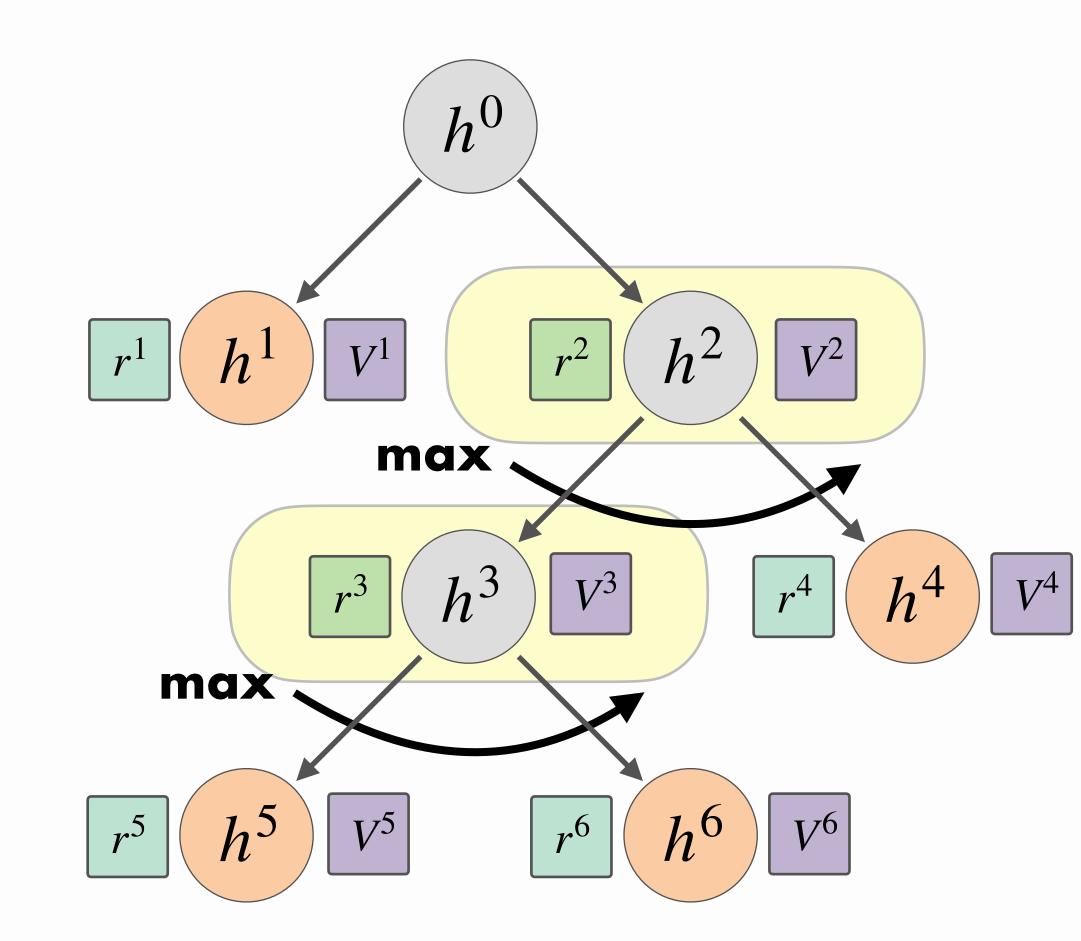
 τ_2

D-TSN: BACKUP PHASE

BELLMAN EQUATION

$$Q(h, a) = r(h, a) + V(h')$$

$$V(h) = \max_{a} \left[Q(h, a) \right]$$



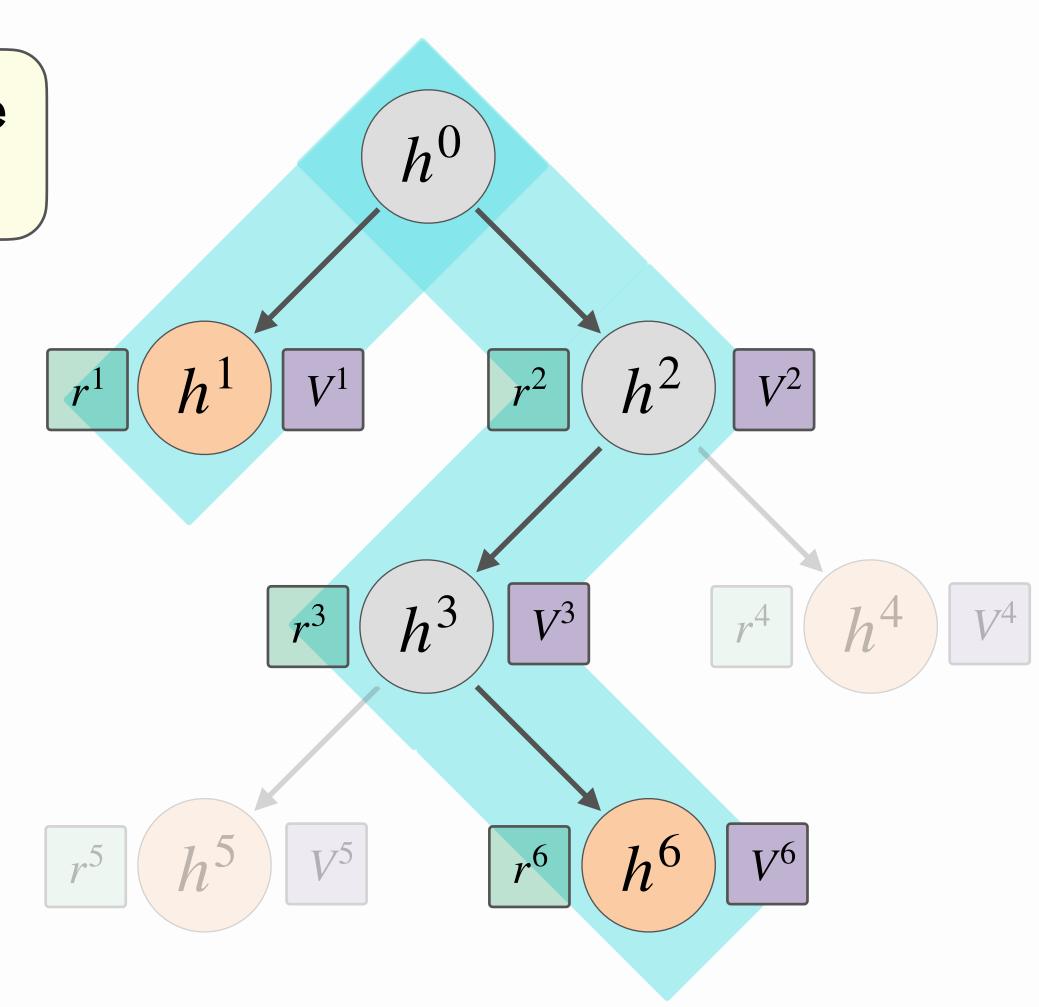
D-TSN: OUTPUT

Model's Output: $Q_{\theta}(s, a)$

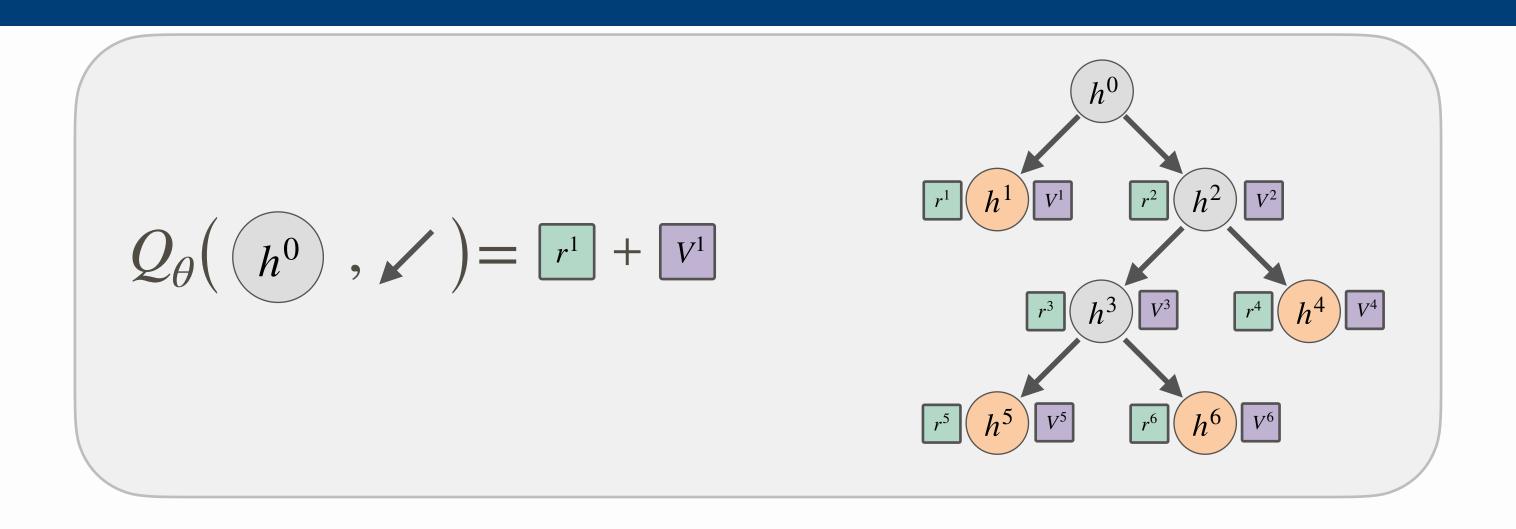
Path returning the highest value

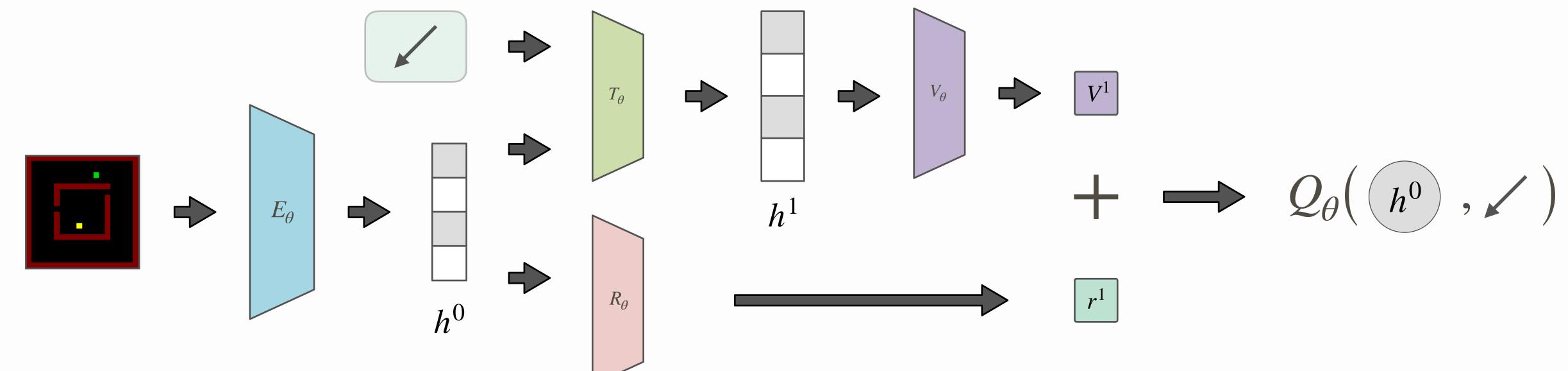
$$Q_{\theta}(h^{0}, /) = r^{1} + v^{1}$$

$$Q_{\theta}(h^{0},) = r^{2} + r^{3} + r^{6} + r^{6}$$

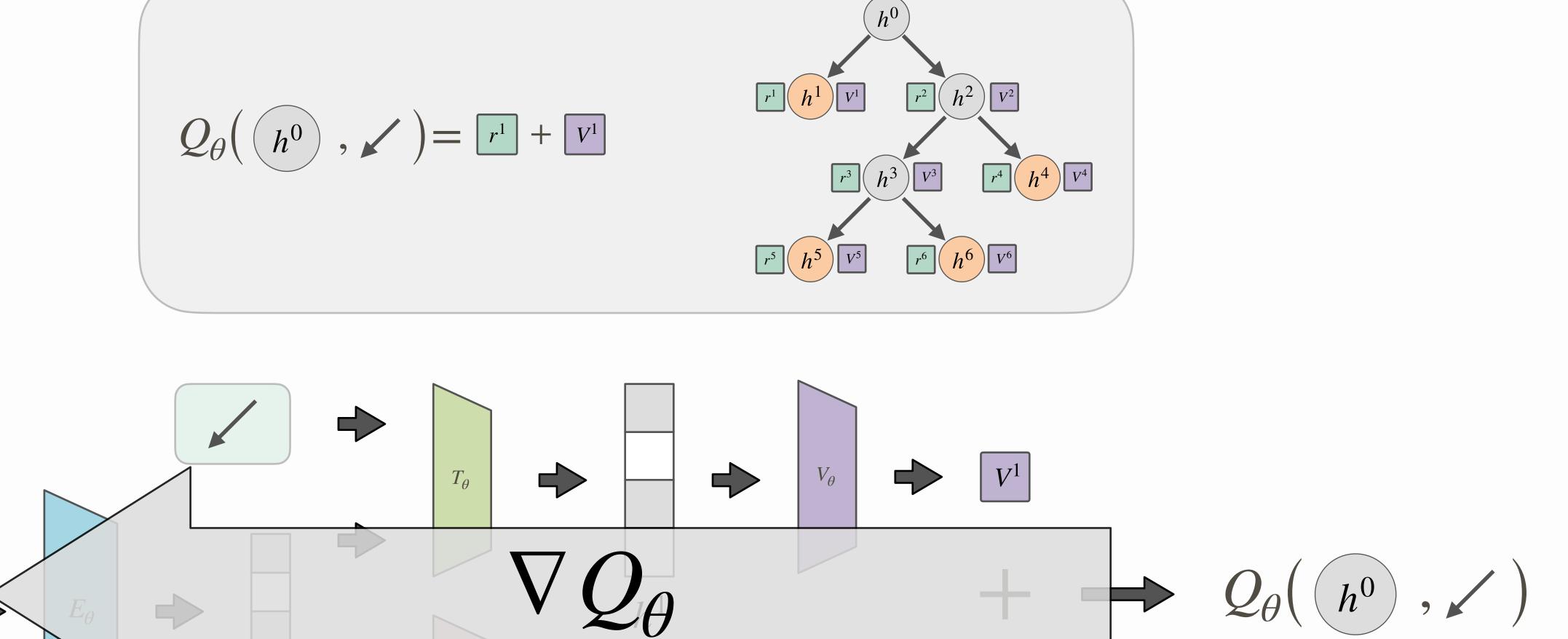


D-TSN: COMPUTATION GRAPH



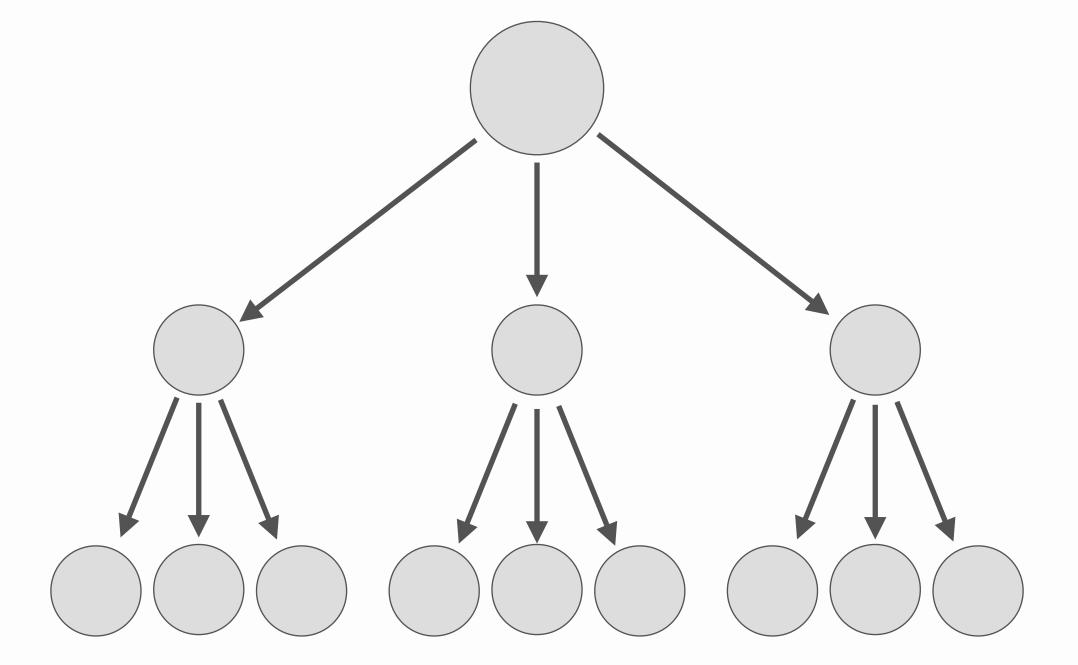


D-TSN: COMPUTATION GRAPH



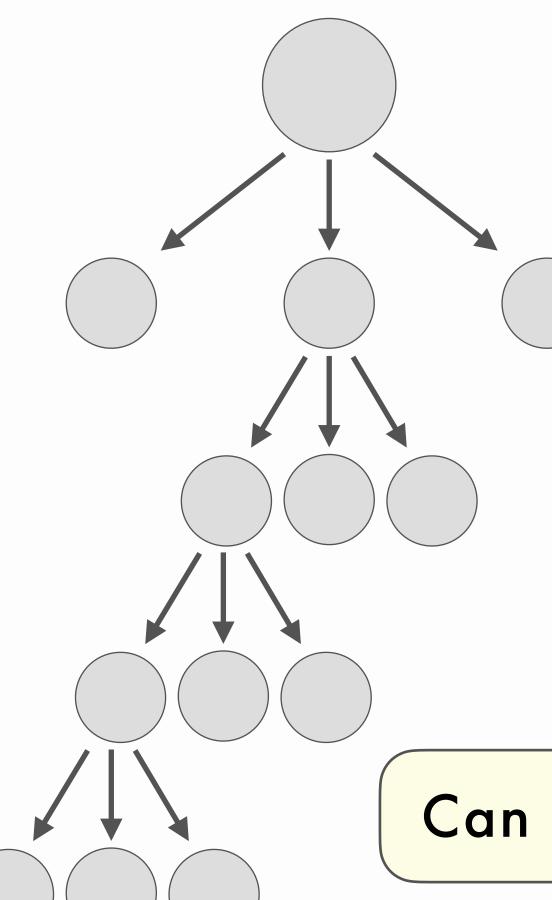
D-TSN: COMPARISON WITH TREEQN

TreeQN



Exponential in Depth

D-TSN



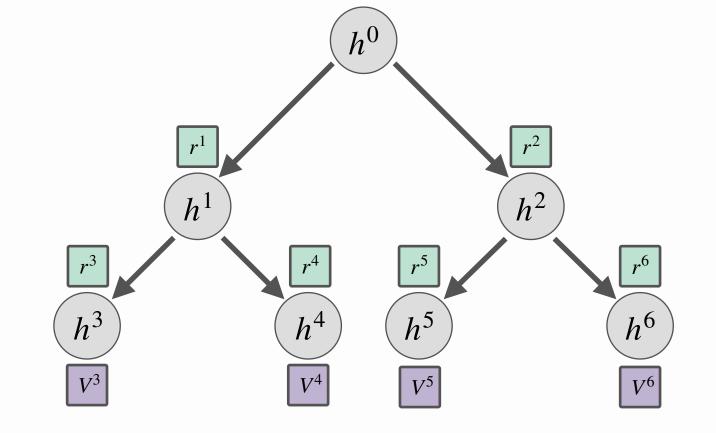
Can go Deeper

D-TSN: CONTINUITY OF LOSS FUNCTION

TreeQN

$$Q(s, Left) = r^1 + max \begin{bmatrix} r^3 + v^3 \\ r^4 + v^4 \end{bmatrix}$$

$$Q(s, Right) = r^2 + max \begin{bmatrix} r^5 + v^5 \\ r^6 + v^6 \end{bmatrix}$$



 $Q_{ heta}(s,a)$ from a Full Tree Search are continuous in parameter space

 $L\Big(Q_{ heta}(s,a)\Big)$ is **continuous** in parameter space heta

D-TSN: CONTINUITY OF LOSS FUNCTION

D-TSN

A best-first search solution is an approximation to the Full Tree Search solution

 $Q_{ heta}(s,a)$ depends upon the sampled tree au

 $L\Big(Q_{\theta}(s,a\,|\, au)\Big)$ can be **discontinuous** in parameter space heta

D-TSN: EXPECTED LOSS FUNCTION

$$\mathbf{Loss} = \mathbb{E}_{\tau} \bigg[L \Big(Q_{\theta}(s, a \mid \tau) \Big) \bigg] = \left[\sum_{\tau} \pi_{\theta}(\tau) \ L \Big(Q_{\theta}(s, a \mid \tau) \Big) \right]$$

Continuous

in the parameter space

D-TSN: EXPECTED LOSS FUNCTION

Loss =
$$\mathbb{E}_{\tau} \bigg[L \Big(Q_{\theta}(s, a \mid \tau) \Big) \bigg]$$

$$\nabla_{\theta}(\textbf{Loss}) = \mathbb{E}_{\tau} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(n_{t} | \tau_{t}) \ L\Big(Q_{\theta}(s, a | \tau_{T})\Big) \right] + \left[\nabla_{\theta} L\Big(Q_{\theta}(s, a | \tau_{T})\Big) \right]$$

Policy Gradient

(to improve tree expansion policy)

Regular Loss Gradient (on output Q-values)

$$\nabla_{\theta}(\textbf{Loss}) = \mathbb{E}_{\tau} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(n_{t} | \tau_{t}) L\left(Q_{\theta}(s, a | \tau_{T})\right) + \nabla_{\theta} L\left(Q_{\theta}(s, a | \tau_{T})\right) \right]$$

High Variance!

$$\nabla_{\theta}(\textbf{Loss}) = \mathbb{E}_{\tau} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(n_{t} | \tau_{t}) \frac{L(Q_{\theta}(s, a | \tau_{T}))}{L(Q_{\theta}(s, a | \tau_{T}))} + \nabla_{\theta} L(Q_{\theta}(s, a | \tau_{T})) \right]$$

Let
$$L_T = L\Big(Q_{\theta}(s, a \mid \tau_T)\Big)$$
 and $L_0 = 0$

$$L_T = L_T - L_0$$

$$= L_T - L_{T-1} + L_{T-1} - L_0$$

$$= \sum_{t=1}^{T} L_t - L_{t-1}$$

Telescopic Sum

Treat Tree Expansion as another decision making problem with goal of reducing Loss value after t^{th} expansion.

Define

Reward as

$$r_t = L_t - L_{t-1}$$

- Sum of Rewards as
$$R_t = \sum_{t}^{I} r_t = L_T - L_{t-1}$$

$$\nabla_{\theta}(\textbf{Loss}) = \mathbb{E}_{\tau} \bigg[\sum_{t=1}^{T} \left[\nabla_{\theta} \log \pi_{\theta}(n_{t} | \tau_{t}) \right] L_{T} + \nabla_{\theta} L_{T} \right]$$

$$= \mathbb{E}_{\tau} \left[\sum_{t=1}^{T} \left[\nabla_{\theta} \log \pi_{\theta}(n_{t} | \tau_{t}) \right] \left[L_{T} - L_{t-1} \right] + \nabla_{\theta} L_{T} \right]$$

Lower variance!

EXPERIMENTS: BASELINES

Differentiable Tree Search Network

Differentiable Search + Joint Optimisation

Model-free Q-network

A generic Neural Network based Q-function

Model-based Search

Best-first Tree Search + Learnt World Model (No joint optimisation)

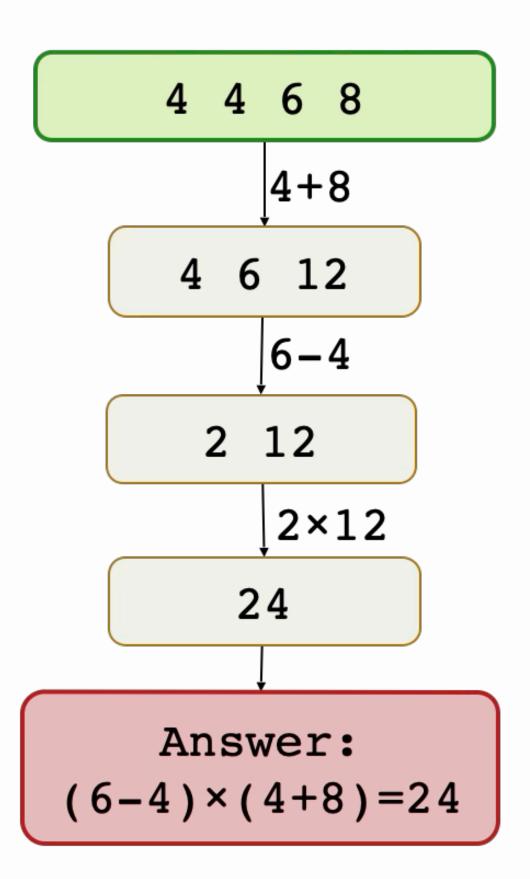
TreeQN

Shallow Tree Search + Joint Optimisation

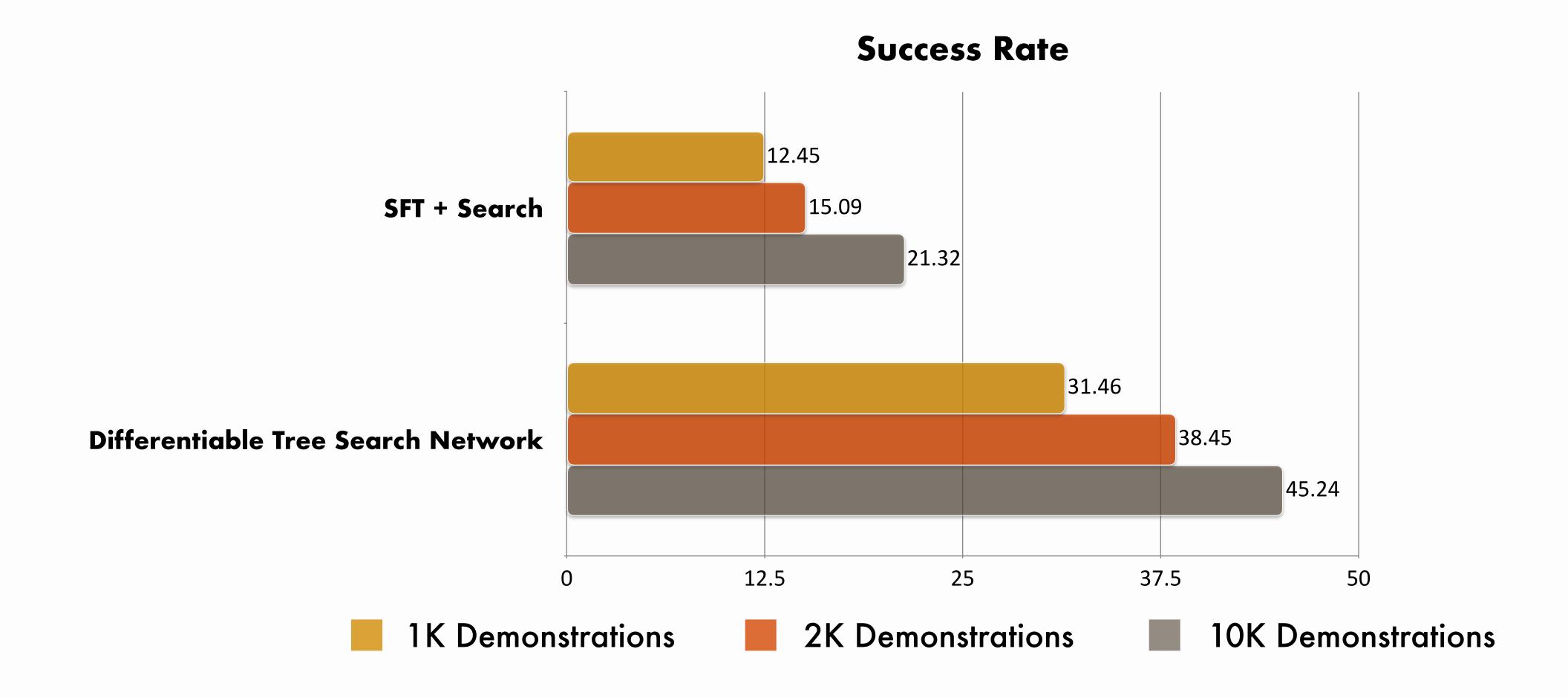
VS

DOMAIN: GAME OF 24

- Known world model
- Actions are: Select operands or operators
- 527 problems for training

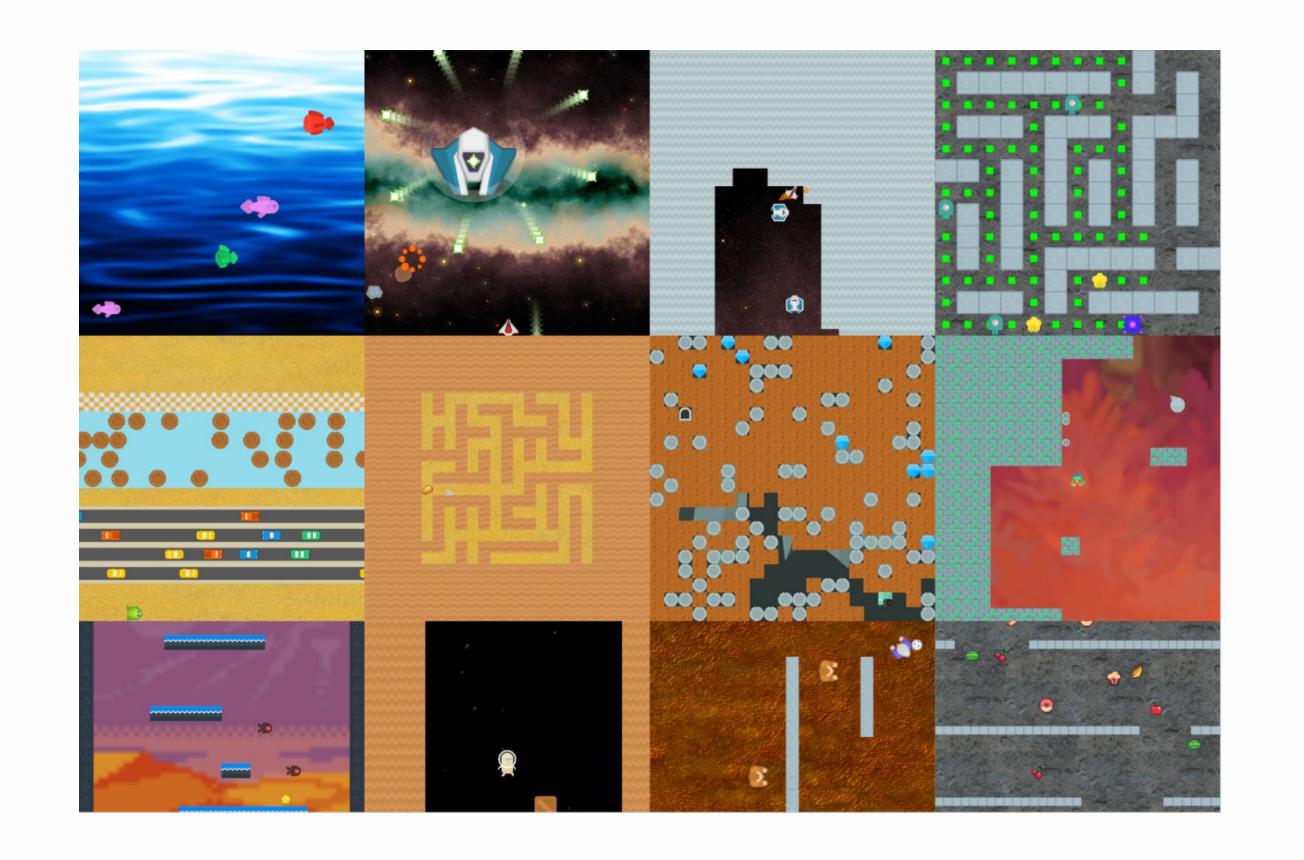


GAME OF 24: RESULTS

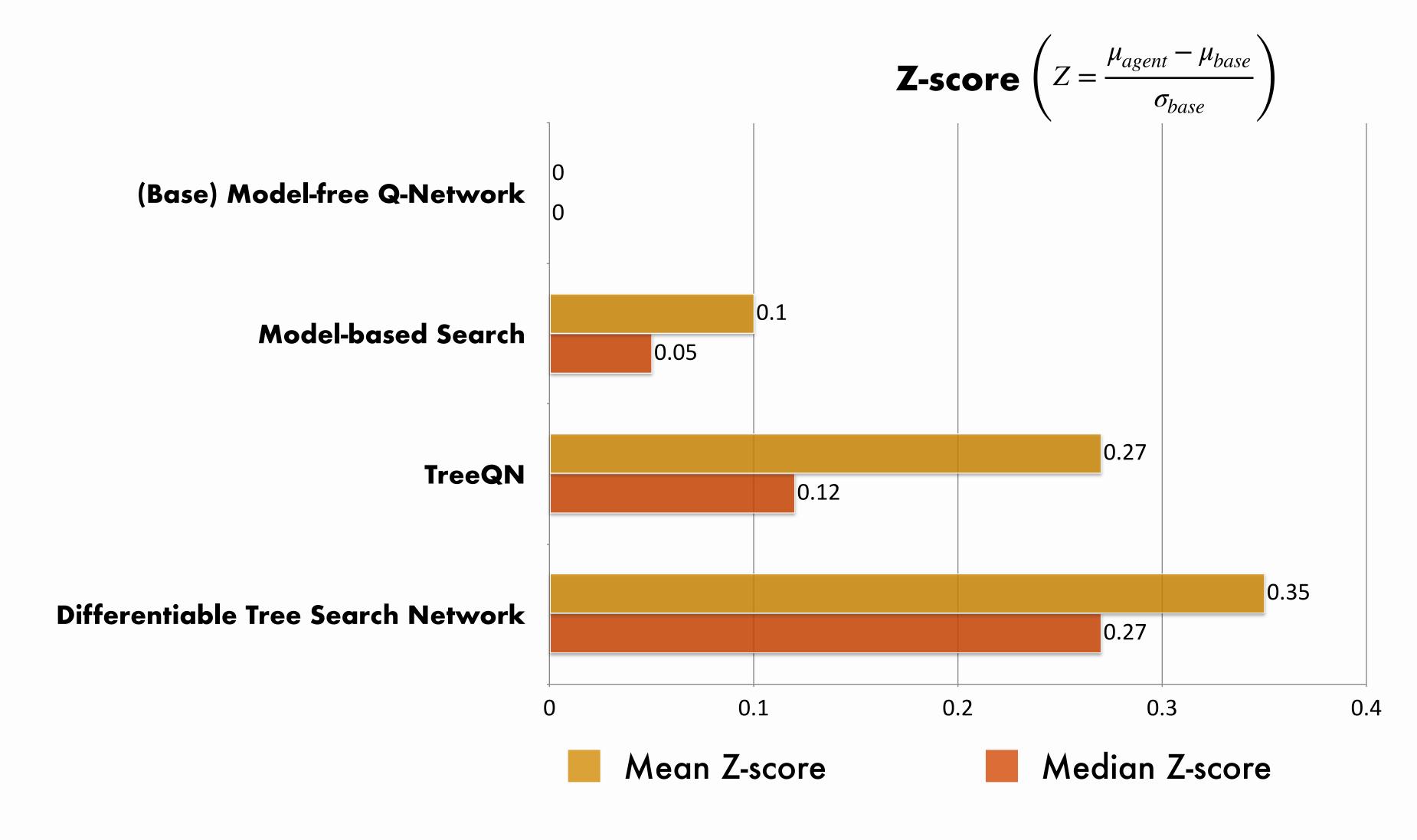


DOMAIN: PROCGEN

- Procedurally generated environments
- 16 different games
- Designed to test generalisation
 capability of an agent's policy
- Collected 1000 Trajectories for training

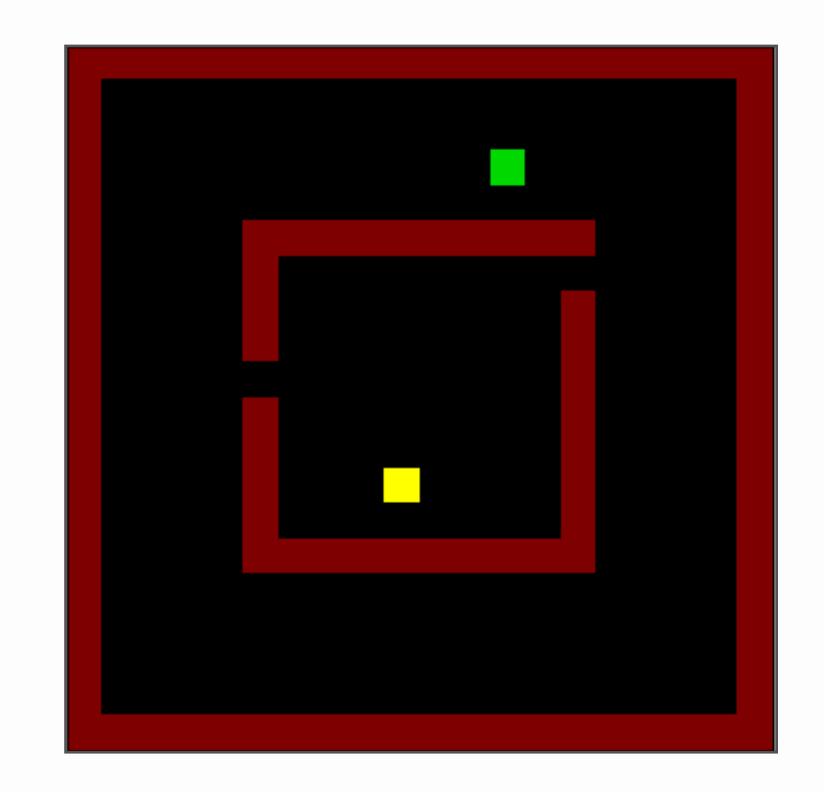


PROCGEN: RESULTS

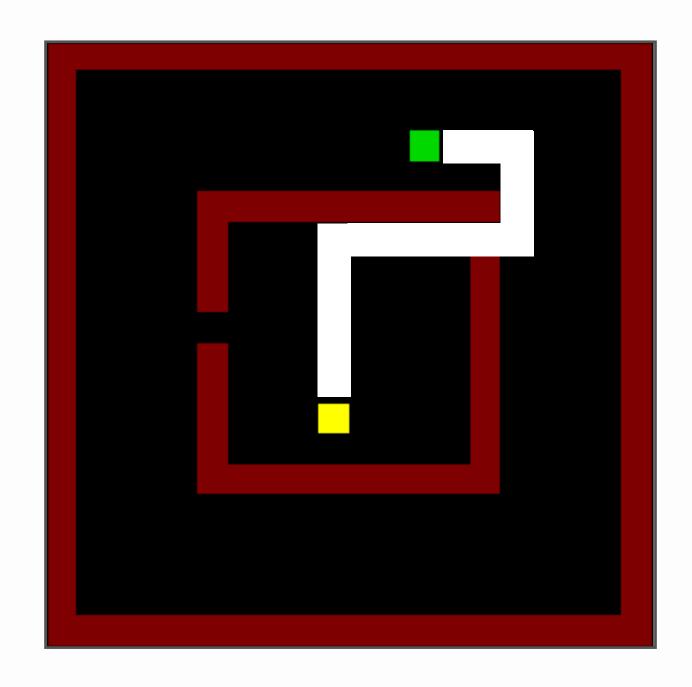


DOMAIN: NAVIGATION

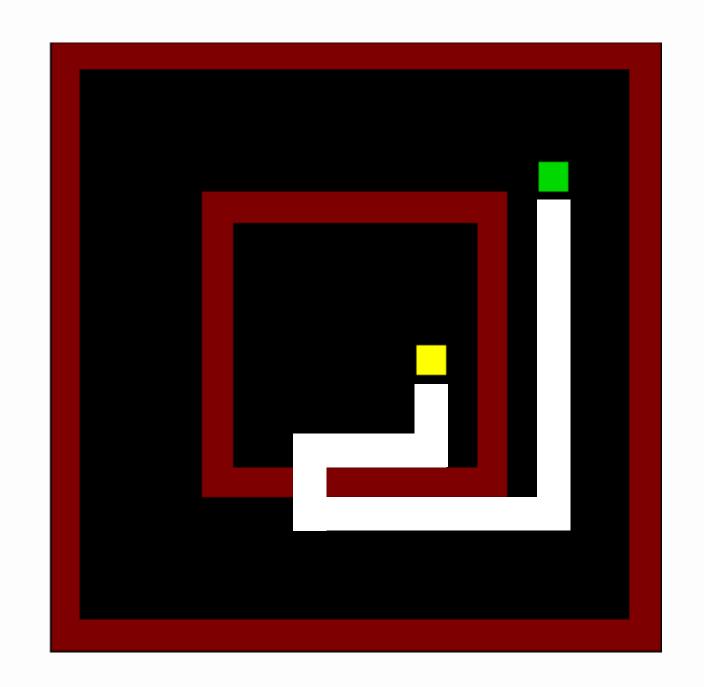
- A simple 10 x 10 grid with 2 areas, i.e. central room and hallway.
- Starts inside the central room and Goal is in the hallway
- Random Exits x2
- Collected 1000 Trajectories for training



NAVIGATION: 2 EXITS VS 1 EXIT (GENERALISATION)

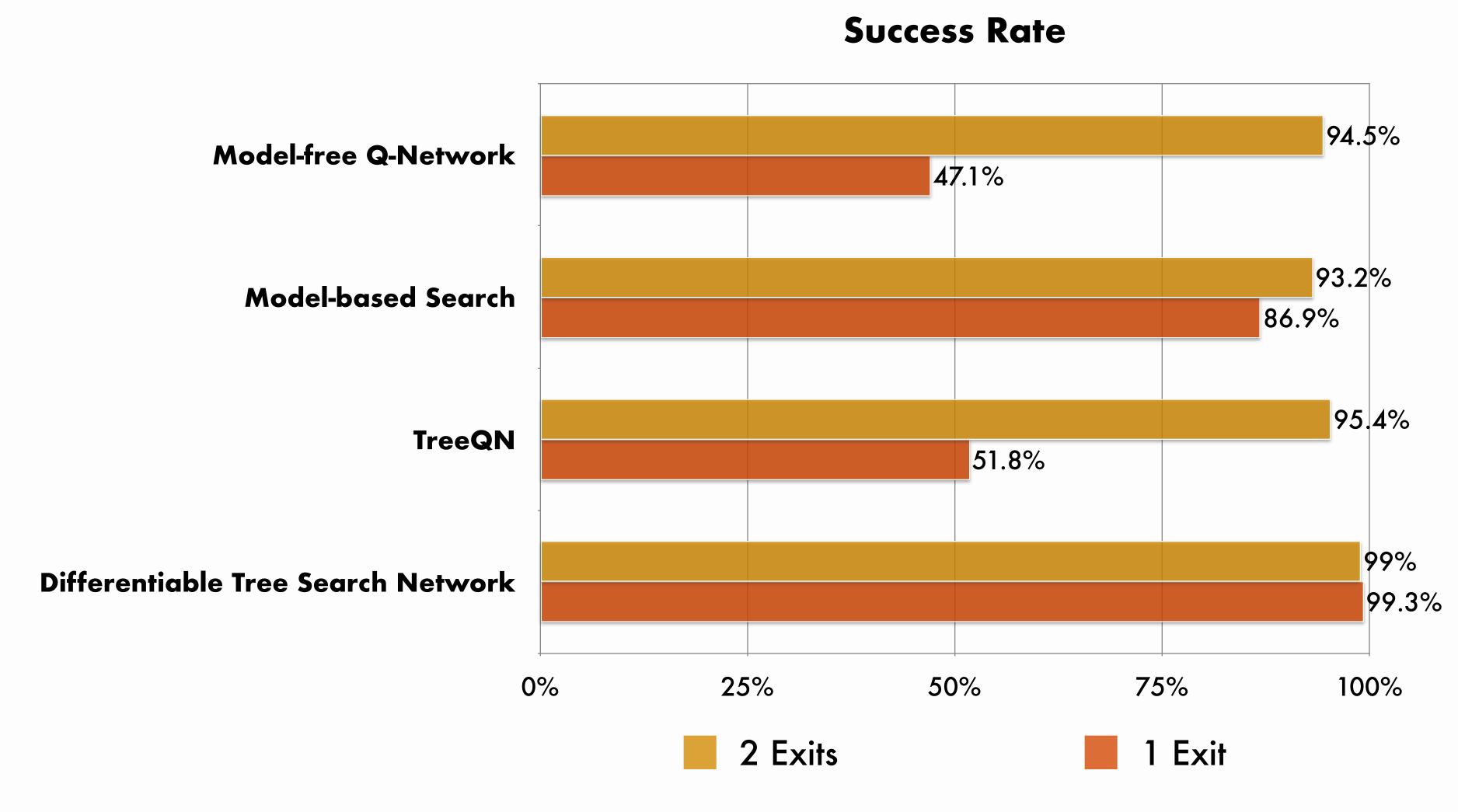


Trained on 2 Exits



Tested on 1 Exit

NAVIGATION: RESULTS



SUMMARY OF CONTRIBUTIONS

Differentiable Tree Search Network (D-TSN)

Modular Neural Network Architecture

that comprises of several learnable submodules

Algorithmic Inductive Bias

of a flexible and scalable best-first tree search algorithm

Learnt World Model

that is trained to be useful for the online search, even if inaccurate

Joint Optimisation

Trains the search and world model submodules jointly

Additional Technical Details

like Tree Expansion Policy and Telescopic Sum for Variance Reduction

Thank You!