
Multiple Heads Are Better Than One: Mixture of Modality Knowledge Experts for Entity Representation Learning

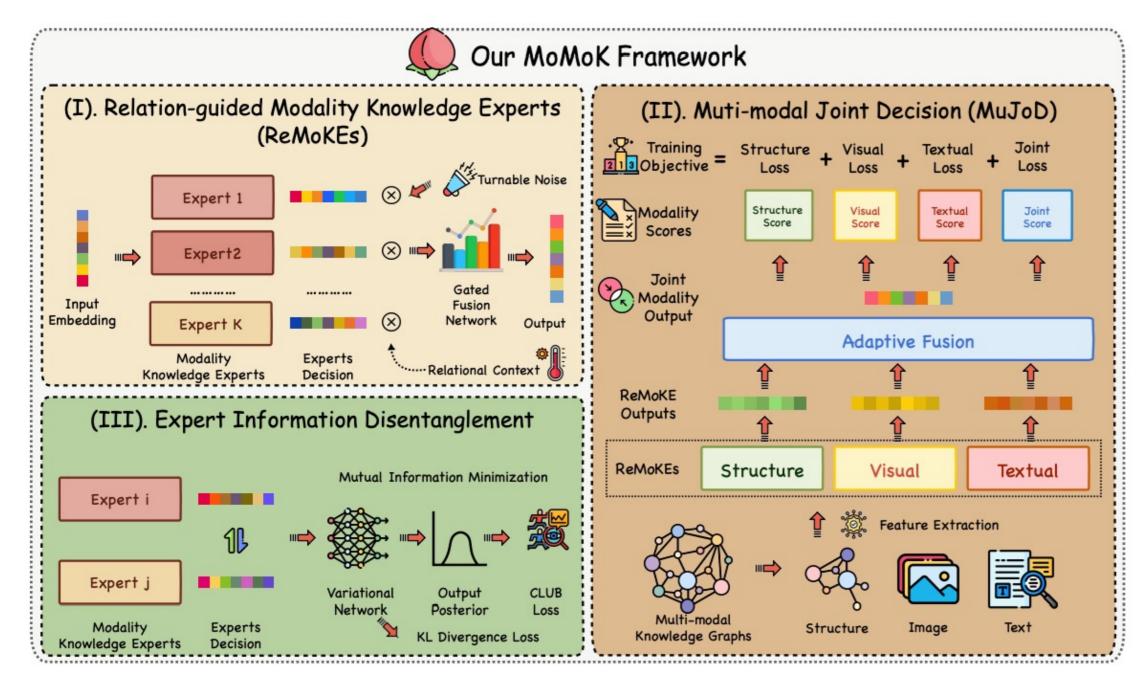
Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Binbin Hu, Ziqi Liu, Wen Zhang, Huajun Chen

Zhejiang University & Ant Group

Case Figure: Different modalities can represent various aspects of entity information, and information within the same modality can also play different roles depending on the relational context

Multi-modal Knowledge Graph Completion (MMKGC) **Existing MMKGC Paradigms:**

- 1. Entity encoding with BERT / VGG / ViT
- 2. Multi-modal fusion in the same representation space
- 3. Triple scoring with traditional KGE / KGC models like TransE


Challenges:

Overlooks the information diversity both inter-modality and intramodality.

What we NEED?

A more fine-grained MMKGC framework that modality functioning as a senior expert, gathering the insights of junior experts within the corresponding modality.

Our Framework: Mixture of Modality Knowledge experts (MOMOK)

Module1: Relation-Guided Modality Knowledge Experts

Adaptive Multi-modal Fusion with Relational Contexts and Mixture-of-Experts Module

$$G_i(\mathcal{V}_{m,i}^e, r) = \frac{\exp\left(\left(\mathcal{U}_m(\mathcal{V}_{m,i}^e) + \delta_{m,i}\right)/\sigma(\varepsilon_r)\right)}{\sum_{i=1}^K \exp\left(\left(\mathcal{U}_m(\mathcal{V}_{m,i}^e) + \delta_{m,i}\right)/\sigma(\varepsilon_r)\right)},$$

Module2: Multi-modal Joint Decision

Setting

Full Model

Modality

Contribution

Model

(1.1). Structure Modality (1.2). Image Modality

(1.3). Text Modality

(1.4). Joint Modality

(2.2). w/o noise δ_m

(2.5). w/o ExID

(2.1). w/o relational ϵ_r

(2.3). w/o adaptive fusion

(2.4). w/o joint training

Achieve Inter-modal and Intra-modal Joint Decision

$$\widehat{\boldsymbol{e}}_{Joint,r} = \frac{\exp(\mathcal{W}_{attn} \odot \mathcal{P}_{m}(\widehat{\boldsymbol{e}}_{m,r}))}{\sum_{n \in \mathcal{M}} \exp(\mathcal{W}_{attn} \odot \mathcal{P}_{n}(\widehat{\boldsymbol{e}}_{n,r}))} \mathcal{P}_{m}(\widehat{\boldsymbol{e}}_{m,r})$$

Module3: Expert Information Disentanglement

- Mutual Information Estimation to Guide the Experts Learning
- Make the Experts more Diverse and Functional

$$\mathcal{L}_{club} = \frac{1}{K^2} \sum_{m \in \mathcal{M}} \sum_{e \in \mathcal{B}} \sum_{i=1}^K \sum_{j \neq i}^K \left(\log \mathcal{Q}_{\theta, m}(\mathcal{V}_{m, j}^e | \mathcal{V}_{m, i}^e) - \sum_{e' \in \mathcal{B} - \{e\}} \log \mathcal{Q}_{\theta, m}(\mathcal{V}_{m, j}^{e'} | \mathcal{V}_{m, i}^e) \right)$$

MKG-W

30.38

27.73

27.78

27.66

29.33

29.98

29.69

30.04

27.09

29.49

MRR

35.89

32.75

32.62

34.76

35.50

35.31

35.34

32.73

34.99

Hit@1 | MRR Hit@1

39.57

36.45

36.84

37.04

36.87

39.40

39.43

39.01

37.62

38.42

DB15K

32.38

29.36

29.80

29.93

29.90

31.47

31.54

30.74

29.72

30.63

Hit@3

43.45

39.99

40.10

40.49

42.44

43.19

43.32

43.29

41.64

42.42

Hit@10

54.14

49.86

50.42

50.39

53.93

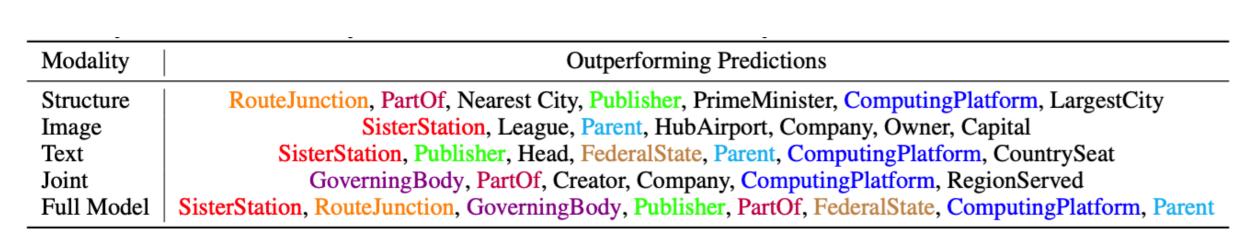
52.88

53.75

53.85

52.73

53.24


Experiments and Evaluation

Model	MKG-W		MKG-Y		DB15K				KVC16K			
	MRR	Hit@1	MRR	Hit@1	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10
					Uni-mod	al KGC M	ethods					
TransE	29.19	21.06	30.73	23.45	24.86	12.78	31.48	47.07	8.54	0.64	10.97	23.42
DistMult	20.99	15.93	25.04	19.33	23.03	14.78	26.28	39.59	6.37	3.03	6.11	12.61
ComplEx	24.93	19.09	28.71	22.26	27.48	18.37	31.57	45.37	12.85	7.48	13.79	23.18
RotatE	33.67	26.80	34.95	29.10	29.28	17.87	36.12	49.66	14.33	8.25	15.37	26.17
PairRE	34.40	28.24	32.01	25.53	31.13	21.62	35.91	49.30	-	-	-	-
TuckER	29.59	23.93	37.05	34.59	33.86	25.34	37.91	50.38	<u>15.90</u>	9.79	<u>17.24</u>	27.58
					Multi-mo	dal KGC M	l ethods					
IKRL	32.36	26.11	33.22	30.37	26.82	14.09	34.93	49.09	11.11	5.42	11.46	22.39
TBKGC	31.48	25.31	33.99	30.47	28.40	15.61	37.03	49.86	5.39	0.35	5.04	15.52
TransAE	30.00	21.23	28.10	25.31	28.09	21.25	31.17	41.17	10.81	5.31	11.34	21.89
MMKRL	30.10	22.16	36.81	31.66	26.81	13.85	35.07	49.39	8.78	3.89	8.99	18.34
RSME	29.23	23.36	34.44	31.78	29.76	24.15	32.12	40.29	12.31	7.14	13.21	22.05
VBKGC	30.61	24.91	37.04	<u>33.76</u>	30.61	19.75	37.18	49.44	14.66	8.28	15.81	27.04
OTKGE	34.36	<u>28.85</u>	35.51	31.97	23.86	18.45	25.89	34.23	8.77	5.01	9.31	15.55
MoSE*	33.34	27.78	36.28	33.64	28.38	21.56	30.91	41.67	8.81	4.75	9.46	16.40
IMF*	34.50	28.77	35.79	32.95	32.25	<u>24.20</u>	36.00	48.19	12.01	7.42	12.82	21.01
QEB	32.38	25.47	34.37	29.49	28.18	14.82	36.67	51.55	12.06	5.57	13.03	25.01
VISTA	32.91	26.12	30.45	24.87	30.42	22.49	33.56	45.94	11.89	6.97	12.66	21.27
AdaMF	34.27	27.21	38.06	33.49	32.51	21.31	<u>39.67</u>	<u>51.68</u>	15.26	8.56	16.71	<u>28.29</u>
					Negative S	Sampling A	1ethods					
MANS	30.88	24.89	29.03	25.25	28.82	16.87	36.58	49.26	10.42	5.21	11.01	20.45
MMRNS	<u>35.03</u>	28.59	35.93	30.53	32.68	23.01	37.86	51.01	13.31	7.51	14.19	24.68
МоМоК	35.89	30.38	37.91	35.09	39.57	32.38	43.45	54.14	16.87	10.53	18.26	29.20
Improvements	+2.5%	+4.2%	-	+3.9%	+21.1%	+33.8%	+9.5%	+4.8%	+10.6%	+23.0%	+9.3%	+3.21%

Rotate	33.07	26.80	34.93	29.10	29.28	17.87	30.12	49.00	14.33	8.25	15.37	26.17
PairRE	34.40	28.24	32.01	25.53	31.13	21.62	35.91	49.30	-	-	-	-
TuckER	29.59	23.93	37.05	34.59	33.86	25.34	37.91	50.38	15.90	<u>9.79</u>	<u>17.24</u>	27.58
					Multi-mo	dal KGC N	1ethods					
IKRL	32.36	26.11	33.22	30.37	26.82	14.09	34.93	49.09	11.11	5.42	11.46	22.39
TBKGC	31.48	25.31	33.99	30.47	28.40	15.61	37.03	49.86	5.39	0.35	5.04	15.52
TransAE	30.00	21.23	28.10	25.31	28.09	21.25	31.17	41.17	10.81	5.31	11.34	21.89
MMKRL	30.10	22.16	36.81	31.66	26.81	13.85	35.07	49.39	8.78	3.89	8.99	18.34
RSME	29.23	23.36	34.44	31.78	29.76	24.15	32.12	40.29	12.31	7.14	13.21	22.05
VBKGC	30.61	24.91	37.04	33.76	30.61	19.75	37.18	49.44	14.66	8.28	15.81	27.04
OTKGE	34.36	28.85	35.51	31.97	23.86	18.45	25.89	34.23	8.77	5.01	9.31	15.55
MoSE*	33.34	27.78	36.28	33.64	28.38	21.56	30.91	41.67	8.81	4.75	9.46	16.40
IMF*	34.50	28.77	35.79	32.95	32.25	24.20	36.00	48.19	12.01	7.42	12.82	21.01
QEB	32.38	25.47	34.37	29.49	28.18	14.82	36.67	51.55	12.06	5.57	13.03	25.01
VISTA	32.91	26.12	30.45	24.87	30.42	22.49	33.56	45.94	11.89	6.97	12.66	21.27
AdaMF	34.27	27.21	38.06	33.49	32.51	21.31	<u>39.67</u>	<u>51.68</u>	15.26	8.56	16.71	<u>28.29</u>
					Negative S	Sampling N	Methods					
MANS	30.88	24.89	29.03	25.25	28.82	16.87	36.58	49.26	10.42	5.21	11.01	20.45
MMRNS	<u>35.03</u>	28.59	35.93	30.53	<u>32.68</u>	23.01	37.86	51.01	13.31	7.51	14.19	24.68
момок	35.89	30.38	37.91	35.09	39.57	32.38	43.45	54.14	16.87	10.53	18.26	29.20
Improvements	+2.5%	+4.2%	-	+3.9%	+21.1%	+33.8%	+9.5%	+4.8%	+10.6%	+23.0%	+9.3%	+3.21%
	N	Iain]	MMI	KGC	result	s on 4	datas	sets				

Hit@1 MRR Hit@3 Hit@10 MMKGC Resu

Ablation study and parameter analysis for MoMoK

