On the expressiveness of rational ReLU neural networks with bounded depth

Gennadiy Averkov

BTU Cottbus, Germany

ICLR 2025, April 24-28, Singapore

Joint paper with Christopher Hojny and Maximilian Merkert

Meta question: high depth \Rightarrow high expressive power?

depth := number of hidden layers

ReLU Networks: activation function ReLU(t) = max{0, t}

Exact Representations: motivated by integer quantization

Piecewise Linearity

Every ReLU network defines a continuous piecewise linear function.

Fundamental Theorem (Arora et al. 2018)

For ReLU networks, depth $\lceil \log_2(n+1) \rceil$ is enough to represent any continuous piecewise linear function in n variables.

Main Conjecture

For each $k \in \{1, ..., \lceil \log_2(n+1) \rceil \}$, there exist functions in n variables, representable with depth k but not with depth k-1.

Equivalent Conjecture (Hertrich et al. 2021)

For $n = 2^t$, the function $\max\{0, x_1, \dots, x_n\}$ admits a representation with depth t + 1 but not with depth t.

Partial Confirmation (Haase et al. 2023)

Main Conjecture and Equivalent Conjecture are true for networks with integer weights.

New Result (ICLR 2025)

Integer weights \rightarrow rational weights

Fractions as weights

N-ary fraction: $\frac{z}{N^e}$, with $z \in \mathbb{Z}$, $e \in \mathbb{Z}_{\geq 0}$.

Example of

 $\begin{array}{ll} \text{decimal fraction} & 3.14159265 \\ \text{binary fraction} & 11.001001_2 \end{array}$

Necessary depth for weights being N-ary fractions

To represent $\max\{0, x_1, \dots, x_n\}$ with N-ary fractional weights: depth $\geq \lceil \log_p(n+1) \rceil$ is necessary, when p is a prime that does not divide N.

$$\Rightarrow$$
 depth $\geq \Omega(\frac{\ln n}{\ln \ln N})$
 \Rightarrow depth $\geq \lceil \log_3(n+1) \rceil$ when weights are decimal fractions.