

Two Effects, One Trigger:

On the Modality Gap, Object Bias, and Information Imbalance in Contrastive Vision-Language Models

Simon Schrodi*,1

David T. Hoffmann*,1,2

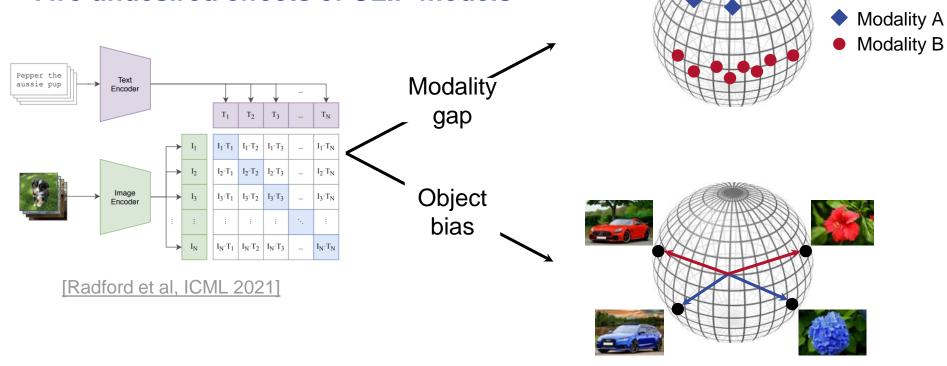
Max Argus¹

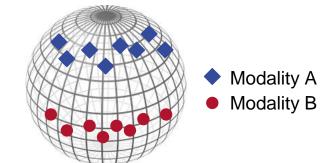
Volker Fischer²

Thomas Brox¹

* Equal contribution

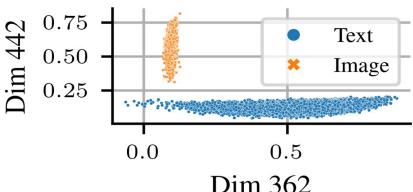
¹University of Freiburg, ²Bosch Center for Artificial Intelligence



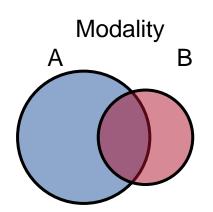


Two undesired effects of CLIP models

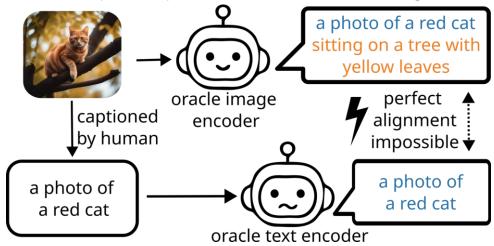
→ Common cause: Information imbalance


How does the modality gap manifest itself?

 Embeddings occupy completely separate regions of the embedding space [<u>Liang et al, NeurIPS 2022</u>]


Some dimensions with high norms are primarily used by only a single modality,

and vice versa:



Information imbalance

- Each sample has shared information and information unique to each modality
 - It is a local phenomenon

For example, captions typically set a focal point and ignore a lot of information

The emergence of the modality gap

$$\mathcal{L}_{\text{CLIP}} = -\frac{1}{2N} \sum_{i=1}^{N} \left(\log \underbrace{\frac{\exp(\tau f(I_i) \cdot g(T_i))}{\sum_{j=1}^{N} \exp(\tau f(I_i) \cdot g(T_j))}} + \log \underbrace{\frac{\exp(\tau g(T_i) \cdot f(I_i))}{\sum_{j=1}^{N} \exp(\tau g(T_i) \cdot f(I_j))}} \right)$$

- Modalities cannot be well aligned
- CLIP model is encouraged to maximize uniformity
 - ⇒ For example, make the modalities as dissimilar as possible → Modality gap!

Controllable data to test our hypothesis

Real dataset

Synthetic MAD dataset

"A photo of a red cat on a tree with yellow leaves"

"2 thickening swelling nofracture small green"

less information imbalance

Full caption: "A red cat on a tree with yellow leaves"

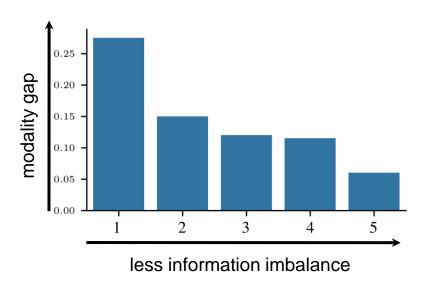
Half caption: "cat on a tree with yellow leaves"

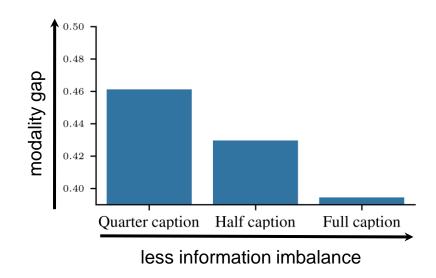
Quarter caption: "cat on"

5 Attributes: "2 thickening swelling no-fracture small green"

3 Attributes: "2 swelling no-fracture small"

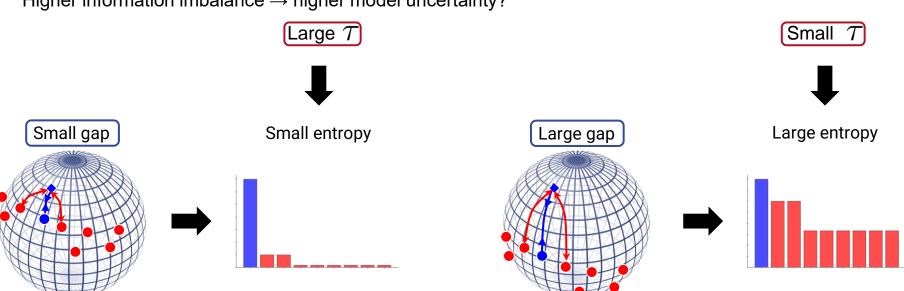

1 Attributes: "2 swelling"


high information imbalance



Information imbalance controls modality gap

Synthetic dataset


But what's the purpose of the modality gap?

It might be a way of the model to adapt the entropy!

Higher information imbalance → larger modality gap

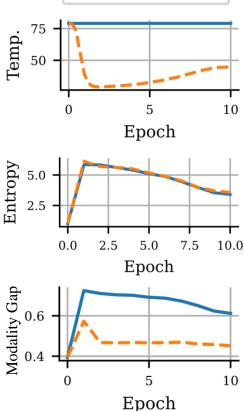
universität freiburg

- Higher information imbalance → higher data uncertainty Caption to image matching less clear
- Higher information imbalance → higher model uncertainty?

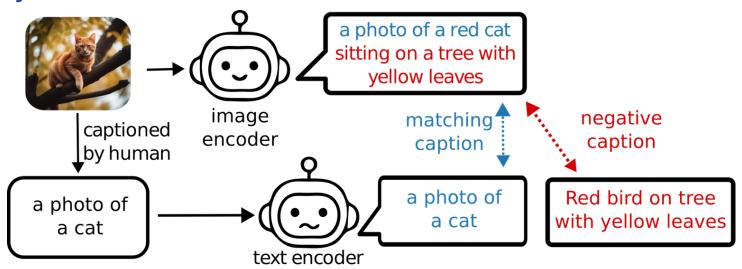
 $\mathcal{L}_{ ext{CLIP}}(I,T) = -rac{1}{N} \sum_{i=1}^{N} \log rac{\exp[Tf(I_i)^Tg(T_i)^Tg$

Experiment: Is the modality gap linked to entropy?

Frozen temp.
Learnable temp.

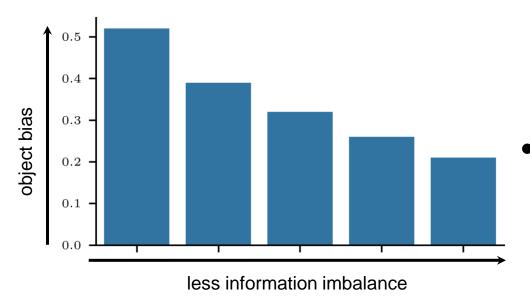

- Train model on CC12M
- 2. Fine-tune this model with higher information imbalance This data intervention increases the entropy of the data We finetune in two settings:
 - With frozen temperature
 - ii. With learnable temperature

What do we expect?

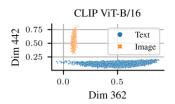

- 1. Entropy of both models changes similarly
- 2. Frozen temperature: gap increases more

→ The modality gap could be a feature to modulate entropy of the model

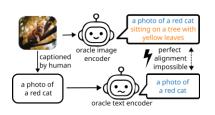
BOSCH



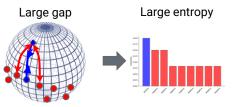
Is object bias also a result of information imbalance?


- Most humans mention central object in caption
- But mention a different set of attributes

Information imbalance controls object bias



The lower the information imbalance the smaller the object bias


Summary

Only few embedding dimensions contribute to the modality gap

Information imbalance leads to both modality gap and object bias

Modality gap influences the entropy of the model

Thank You For Your Attention!

