

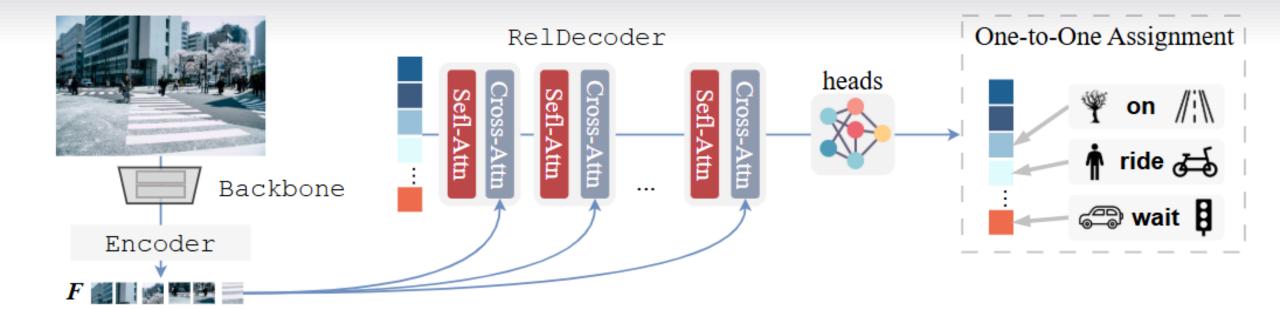
Hydra-SGG: Hybrid Relation Assignment for One-Stage Scene Graph Generation

Authors: Minghan Chen, Guikun Chen, Wenguan Wang, Yi Yang

Agenda

Motivation & Problem

Method


Results

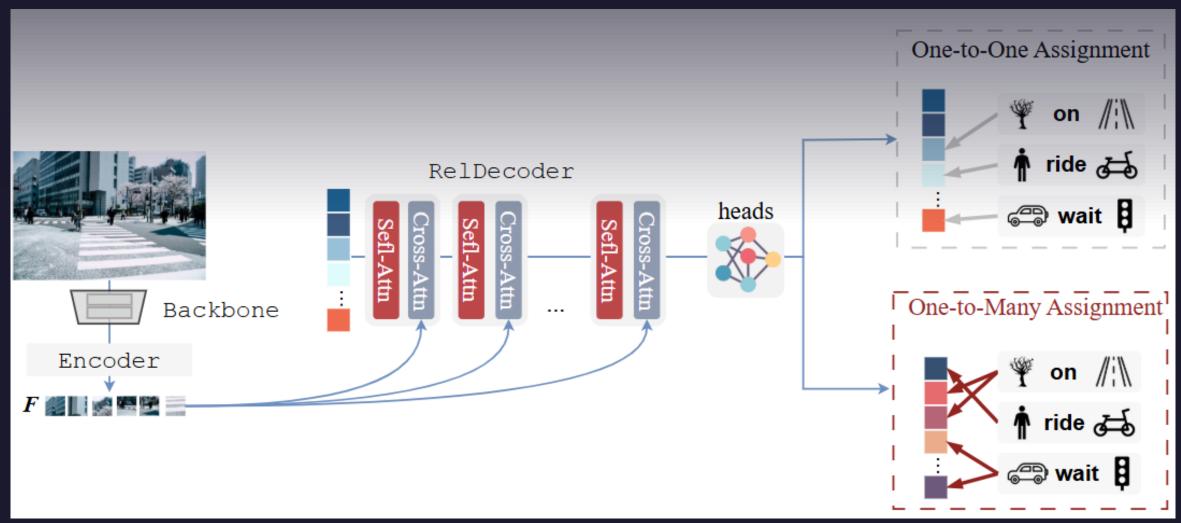
Motivation & Problem

Sparse supervision: Each image only has around 5 relations, but the model uses 300 relation queries

False negatives: Some predictions are close to the ground truth but are wrongly treated as negatives, hurting training.

Method

To solve this, we propose **Hydra-SGG**, a one-stage SGG model with two main ideas:


•Hybrid Relation Assignment: Combines traditional One-to-One matching with a new IoU-based One-to-Many assignment to exploit more positive queries.

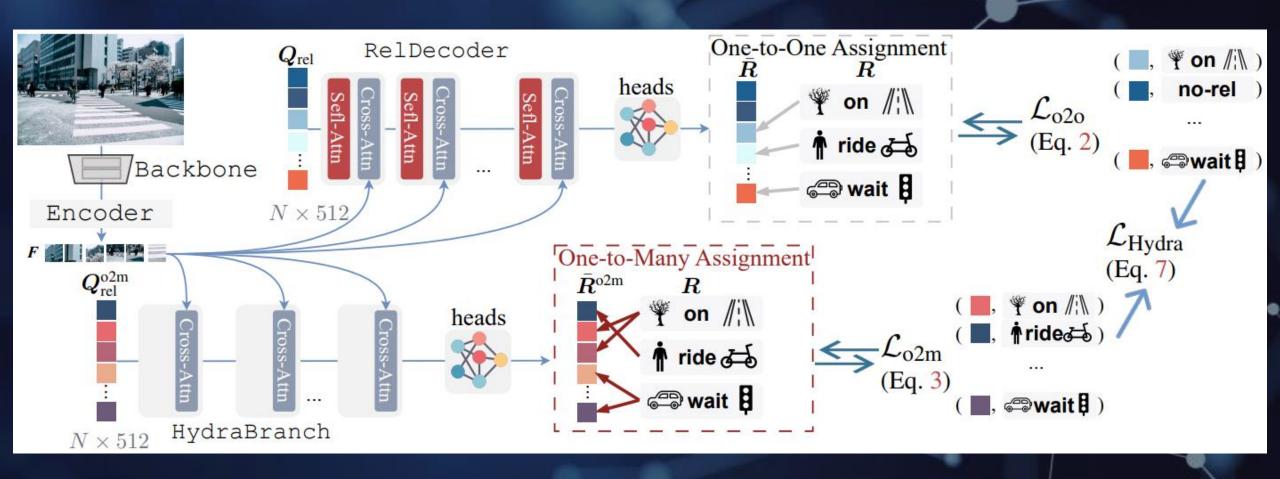
•Hydra Branch: An auxiliary decoder without selfattention that promotes duplicate predictions—which actually helps the One-to-Many training.

Vanilla Hydra-SGG

Our hybrid strategy gives 60% more positive samples per step.

Insights

Previous studies indicate that selfattention helps inhibit duplicate predictions


Query ID	w Self-	attn v	w/o Self-attn		
41	on		above		
61	with	Converge	above		
191	near		above		
209	on		above		

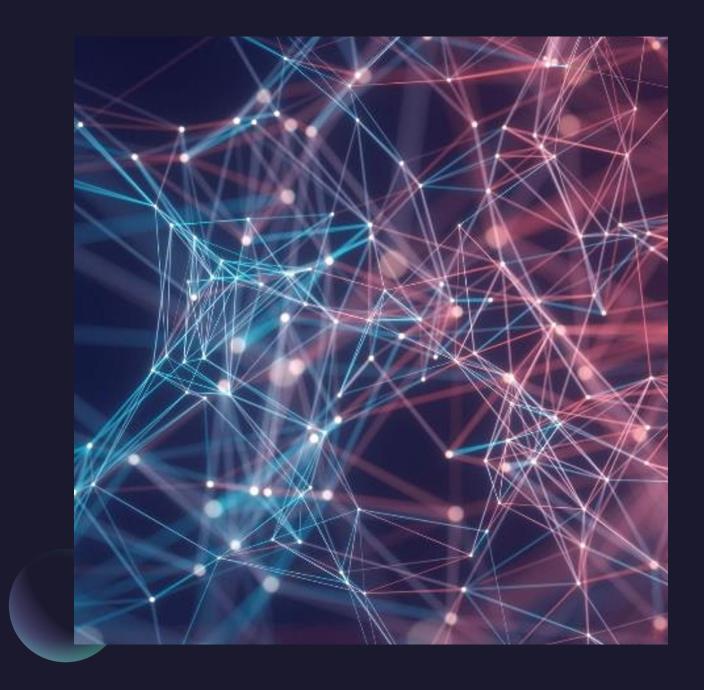
Query ID	w Self-a	attn	w/o Self-attn		
42	of		has		
52	wear	Converge	has		
67	has		has		
126	on		has		

Hydra-SGG

Main Results

Table 1: SGDet evaluation on VG150 [27] test (§4.2). +: detector pre-trained on VG150. FPS (Frames Per Second) indicates inference speed. F-Recall of Hydra-SGG is calculated based on the best results.

Method	Backbone	# Epoch	FPS	# Param	R@20/50/100	mR@20/50/100	F@20/50/100	
Two-stage methods								
MOTIFS [85] [CVPR2018]	ResNeXt101-FPN	-	-	369.9M	25.1 / 32.1 / 36.9	4.1 / 5.5 / 6.8	7.1 / 9.2 / 11.7	
VCTree-TDE [65] [CVPR2020]	ResNeXt101-FPN	-	-	361.3M	14.3 / 19.6 / -	6.3 / 9.3 / 11.1	8.8 / 12.4 / -	
BGNN [39] [CVPR2021]	ResNeXt101-FPN	-	-	341.9M	23.3 / 31.0 / 35.8	7.5 / 10.7 / 12.7	11.3 / 15.5 / 19.0	
PE-Net [91] [CVPR2023]	ResNeXt101-FPN	32+	-	-	- / 30.7 / 35.2	- / 12.4 / 14.5	- / 17.7 / 21.2	
IS-GGT [29] [CVPR2023]	ResNet101	70	-	-	-/-/-	-/9.1/11.3	-/-/-	
VETO [61] [ICCV2023]	ResNeXt101-FPN	33+	-	-	- / 27.5 / 31.5	-/8.1/9.5	- / 12.5 / 14.6	
UniVRD [90] [ICCV2023]	CLIP ViT-B	-	-	-	-/-/-	-/9.6/12.1	-/-/-	
DRM [32] [CVPR2024]	ResNeXt101-FPN	-	-	-	- / 34.0 / 38.9	-/9.0/11.2	- / 14.2 / 17.4	
One-stage methods								
SGTR [40] [CVPR2022]	ResNet101	123+	-	117.1M	- / 25.1 / 26.6	- / 12.0 / 14.6	- / 16.2 / 18.9	
SSR-CNN [67] [CVPR2022]	ResNet101	-	-	274.3M	25.8 / 32.7 / 36.9	6.1 / 8.4 / 10.0	9.9 / 13.4 / 15.7	
ISG [24] [NeurIPS2022]	ResNet101	52	-	93.5M	- / 29.5 / 32.1	-/7.4/8.4	-/11.8/13.3	
RelTR [7] [TPAMI2023]	ResNet50	150	6.5	63.7M	21.2 / 27.5 / 30.7	6.8 / 10.8 / 12.3	10.3 / 15.5 / 17.6	
DSGG [13] [CVPR2024]	-	60	-	-	- / 32.9 / 38.5	- / 13.0 / 17.3	- / 18.6 / 23.9	
SpeaQ [26] [CVPR2024]	ResNet101	52	-	-	- / 32.9 / 36.0	- / 11.8 / 14.1	- / 17.4 / 20.3	
EGTR [18] [CVPR2024]	ResNet50	275+	7.7	42.5M	23.5 / 30.2 / 34.3	5.5 / 7.9 / 10.1	8.9 / 12.5 / 15.6	
Ours								
Hydra-SGG [ICLR2025]	ResNet50	12	5.3	67.6M	21.9 / 28.6 / 33.4	10.3 / 15.9 / 19.4	14.0 / 20.5 / 24.7	
Tryula-300 [ICLR2025]	Residence	12	3.3	07.0W	$\pm 0.1 / \pm 0.2 / \pm 0.3$	± 0.2 / ± 0.2 / ± 0.2	14.0 / 20.3 / 24.7	
T 11 0 F 1 1	0 1	T		(0.4.0)	4 • • •			


Table 2: Evaluation on Open Images V6 [30] test (§4.2). +: detector pre-trained on Open Images V6.

Method	Backbone	# Epoch	# Param	R@50	$wmAP_{rel}$	$wmAP_{phr}$	score _{wtd}
Two-stage methods							
Motifts [85] [CVPR2018]	ResNeXt101-FPN	-	369.9M	71.6	29.9	31.6	38.9
BGNN [39] [CVPR2021]	ResNeXt101-FPN	-	341.9M	75.0	35.5	34.2	42.1
PE-Net [91] [CVPR2023]	ResNeXt101-FPN	-	-	76.5	35.4	34.9	44.9
One-stage methods				•			
SGTR [40] [CVPR2022]	ResNet101	123 ⁺	117.1M	59.9	37.0	38.7	42.3
RelTR [7] [TPAMI2023]	ResNet50	150	63.7M	71.7	34.2	37.5	43.0
EGTR [18] [CVPR2024]	ResNet50	275+	42.5M	75.0	42.0	41.9	48.6
Ours							
Hydra-SGG [ICLR2025]	ResNet50	7	67.6M	$76.0_{\pm 0.2}$	42.8 $_{\pm0.2}$	44.1 $_{\pm 0.2}$	$50.0_{\pm 0.2}$

Thank you

Minghan Chen

Minghan.Chen@student.uts.edu.au

