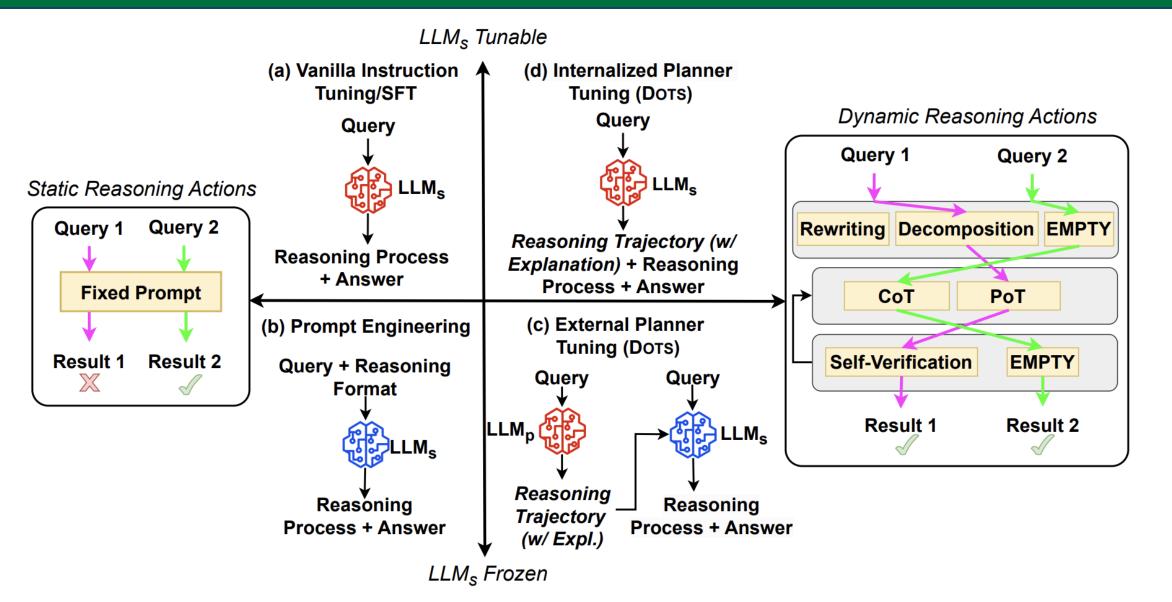
DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search

Murong Yue¹, Wenlin Yao², Haitao Mi², Dian Yu², Ziyu Yao¹, Dong Yu²

¹George Mason University, ²Tencent AI Lab, Bellevue

Motivation



Question II:

How many r in word 'strawberry'?

Answer from GPT-40-2024-08-06 (Incorrect):

The word "strawberry" contains 2 letter "r"s.

Answer from our internal planner tuned Llama-8b-Instruct:

It can efficiently count the occurrences of a specific character (in this case, 'r') in a word. Programming_solver provides a quick and reliable method for counting characters in text, ensuring accuracy in the result.

Required Action: programming

word = 'strawberry'
count=word.lower().count('r')
print(count)

After execution, we get: 3 Answer: 3

Static and dynamic paradigms of LLM reasoning

Case Study

Motivation: The current LLM fails to dynamically decide the best reasoning strategies, e.g., when to use program.

Method

Searching Optimal Reasoning Actions Trajectory (given LLMs (1)) Query: How many integers between 1 and 200 are multiples of both 3 and 5 but not of either 4 or 7? Solution Layer **Verification Layer EMPTY Self-Verification** EMPTY Constructed Training Data Optimal Reasoning Trajectory: PoT -> Self-Verification Reasoning Process: Now write Python codes to answer this question: ```python . Let's verify the answer by formulating a verification question. Explanation: The problem can be efficiently solved using programming to iterate through Use GPT-40 to explain why the the range...The answer is easy to verify. Verification ensures that the programmatic trajectory is optimal for this question Fine-Tuning the Planner LLM LLMs LLM_p Reasoning Process, Answer

(b) Internalized Planner Tuning

(a) External Planner Tuning

- 1. Module Design: We manually design atomic reasoning action modules based on prior prompting works, e.g., programming, verification;
- 2. Searching Best Trajectory: We perform multiple trials on all possible modules permutations and select the best one with the highest accuracy;
- 3. Training a planner: We use GPT-40 to generate the reason why the selected trajectory is the best based on the nature of the question, then either finetune a planner LLM as an external planning module (DOTS: External) or directly finetune the solver LLM and internalize the planning ability (DOTS: Internalized).

Experiments

Method	Tuning	Reasoning Format	MATH	BBH	Game of 24	TheoremQA	Average					
External Planner: Llama-3-8B-Instruct; Solver: Llama-3-70B-Instruct												
CoT	Х	\mathcal{L}	50.4	72.7	27.5	27.4	44.5					
LTM	X	${\cal L}$	50.1	73.8	24.9	28.8	44.4					
PA	✓	${\cal L}$	52.5	72.9	26.8	28.8	45.3					
PoT	X	${\cal P}$	54.7	65.8	63.9	31.1	53.9					
Self-refine	X	\mathcal{L},\mathcal{P}	55.9	71.4	68.3	30.8	56.6					
DOTS: External	✓	\mathcal{L}, \mathcal{P}	57.7	77.3	67.7	31.2	58.5					
External Planner: Llama-3-8B-Instruct; Solver: GPT4o-mini												
CoT	Х	\mathcal{L}	70.2	80.3	27.7	38.9	54.2					
LTM	X	${\cal L}$	72.2	79.4	25.5	36.4	53.3					
PA	✓	${\cal L}$	73.5	81.1	26.7	38.9	55.1					
PoT	X	${\cal P}$	67.2	73.9	61.4	35.8	59.6					
Self-refine	X	\mathcal{L},\mathcal{P}	73.7	74.8	68.7	34.6	63.0					
DOTS: External	✓	\mathcal{L}, \mathcal{P}	75.4	84.2	65.2	41.4	66.5					

Method	Tuning	Reasoning format	MATH	ввн	Game of 24	TheoremQA	Average					
Solver: Llama-3-8B-Instruct												
СоТ	X	\mathcal{L}	29.6	48.9	12.7	14.8	26.5					
LTM	X	${\cal L}$	29.5	50.3	14.4	15.2	27.4					
PA	✓	${\cal L}$	31.0	47.2	11.8	15.1	26.3					
PoT	X	${\cal P}$	25.3	44.6	16.8	16.7	25.9					
Self-refine	X	\mathcal{L},\mathcal{P}	28.7	46.6	17.0	15.3	30.1					
Vanilla SFT	✓	${\cal L}$	33.9	61.0	18.5	14.8	33.6					
Dots: Internalized	✓	\mathcal{L}, \mathcal{P}	34.4	69.7	21.9	16.1	35.5					

- Both the external planner and internal planner are better than the baselines;
- Further analysis show that our method can both adapt to the characteristics of specific questions and the capability of specific task-solving LLMs.