An Image is Worth More Than 16x16 Patches: Exploring Transformers on Individual Pixels

Duy-Kien Nguyen

Unnat Jain

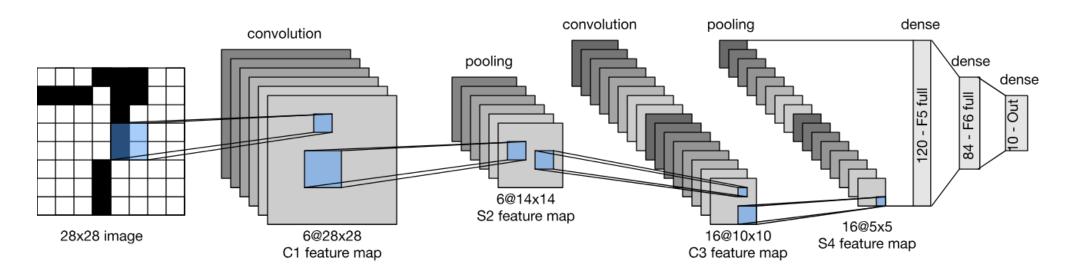
Mido Assran

Martin Oswald

Cees Snoek

Xinlei Chen

facebook Artificial Intelligence Research

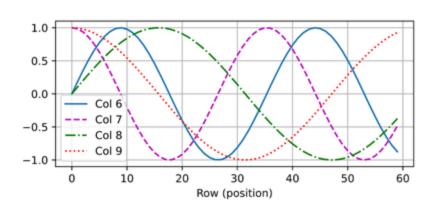


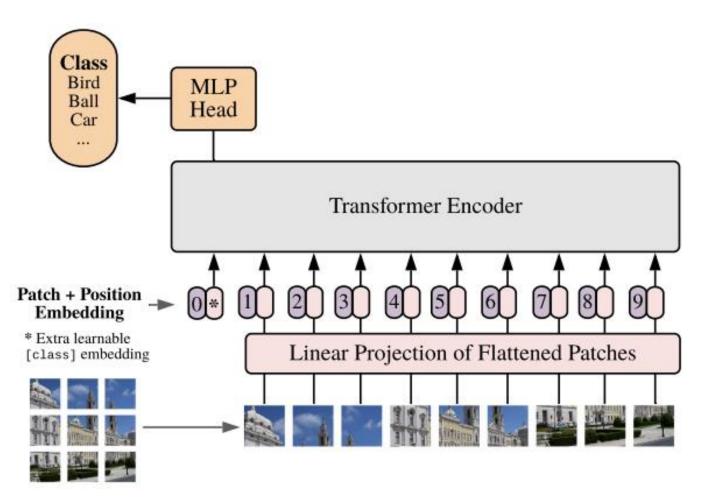
ConvNet capitalizes on locality:

- Local kernel
- Spatial reduction with local pooling

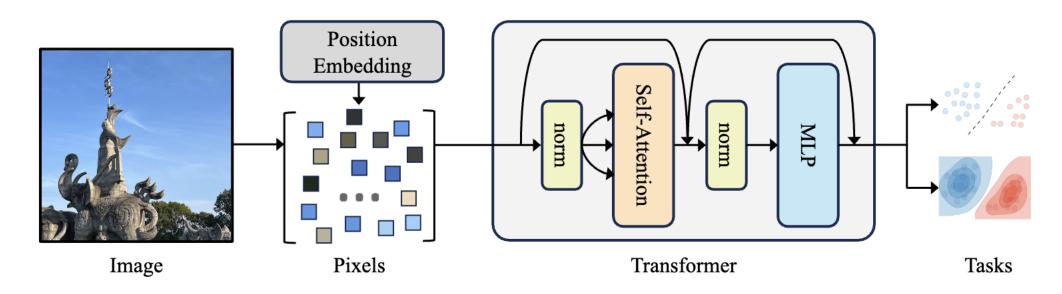
Vision Transformer (ViT) also has locality:

- Patchification
- Sinusoidal Position Embedding





??



Explore the design without locality

- Pixel as input to Transformer, no patchification (or 1x1 patches)
- Learnable Position Embedding

Comparisons for Prior, or Inductive Bias

inductive bias	ConvNet	ViT	our work
spatial hierarchy	√	X	X
translation equivariance	✓	✓	✓
locality	√	✓	X

If Transformer w/ pixels can work just as well compared to ViT or ConvNet, then locality is <u>not</u> that fundamental for vision

Evaluation Protocols

- Three studies:
 - Supervised Learning

w/ image classification on CIFAR-100 (32x32) and ImageNet (28x28)

w/ fine-grained classification on Oxford-102-Flower (32x32)

w/ depth estimation on NYU-v2 (48x64)

Self-Supervised Learning

w/ masked autoencoding on CIFAR-100 (32x32)

Image Generation

w/ diffusion modeling on ImageNet

Supervised Learning

	Acc@1	Acc@5
ViT-T/2	83.6	94.6
ViT-T/1	85.1	96.4
ViT-S/2	83.7	94.9
ViT-S/1	86.4	96.6
ViT-B/2 (Shen et al., 2023)	72.6	-

	Acc@1	Acc@5
ViT-S/2	72.9	90.9
ViT-S/1	74.1	91.7
ViT-B/2	75.7	92.3
ViT-B/1	76.1	92.6
ViT-L/2	75.6	92.3
ViT-L/1	76.9	93.0

(a) CIFAR-100 classification

(b) **ImageNet** classification

ViT w/ pixel tokens *outperforms* patch-based ViT on both CIFAR-100 and ImageNet

Supervised Learning

	Acc@1	Acc@5		RMSE (↓)	RAE (↓)
ViT-S/2	45.8	68.3	ViT-S/2	0.80	0.78
ViT-S/1	46.3	68.9	ViT-S/1	0.72	0.74

⁽c) Oxford-102-Flower fine-grained classification

(d) **NYU-v2** depth estimation (regression)

ViT w/ pixel tokens *outperforms* patch-based ViT on fine-grained classification and depth estimation

Dictionary-based Tokens

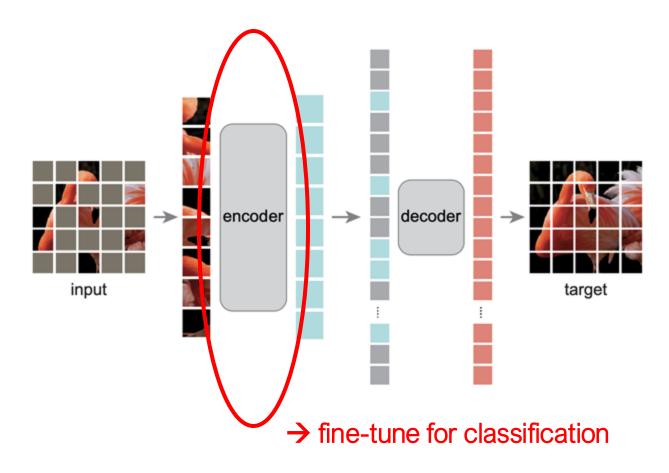
	Acc@1	Acc@5
ViT-B/1	76.1	92.6
ViT-B/1 w/ dictionary	76.6	92.8

Patch-based tokens can lead to out-of-vocabulary issues

Pixels as tokens greatly reduce the vocabulary size of input tokens

[0, 255] color values to mapped to an embedding layer of 256xd

Self-Supervised Learning



Pre-train with Masked Autoencoding (MAE)

Self-Supervised Learning with MAE

	pre-train	Acc@1	Acc@5
ViT-T/1		85.1	96.4
V11-1/1	✓	86.0	97.1
ViT-T/2	/	85.7	97.0

	pre-train	Acc@1	Acc@5
ViT-S/1		86.4	96.6
V11-5/1	✓	87.7	97.5
ViT-S/2	1	87.4	97.3

(a) **Tiny**-sized models.

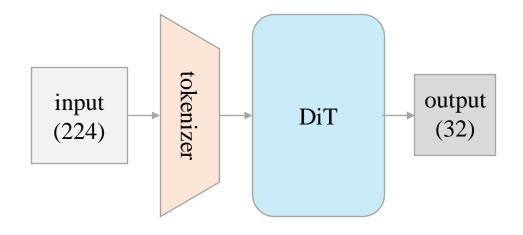
(b) **Small**-sized models.

Similar trend is observed on self-supervised learning with MAE

Image Generation

Diffusion Transformer (DiT):

- 2x2 patchification with Sinusoidal
- Different, modulated architecture compared to vanilla ViT
- Operate on "tokens", not pixels -- latent



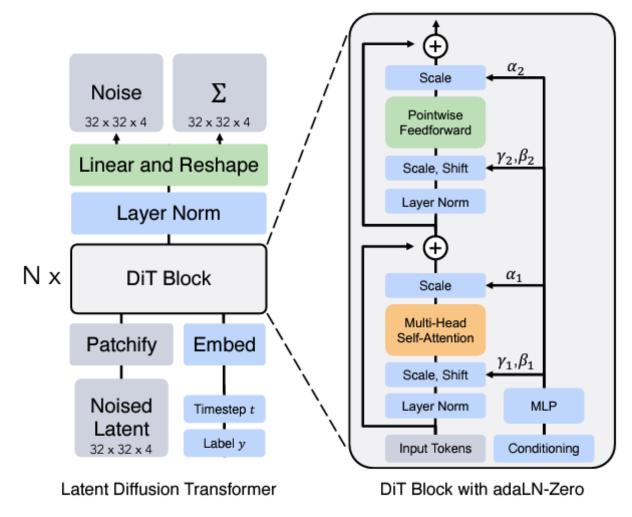


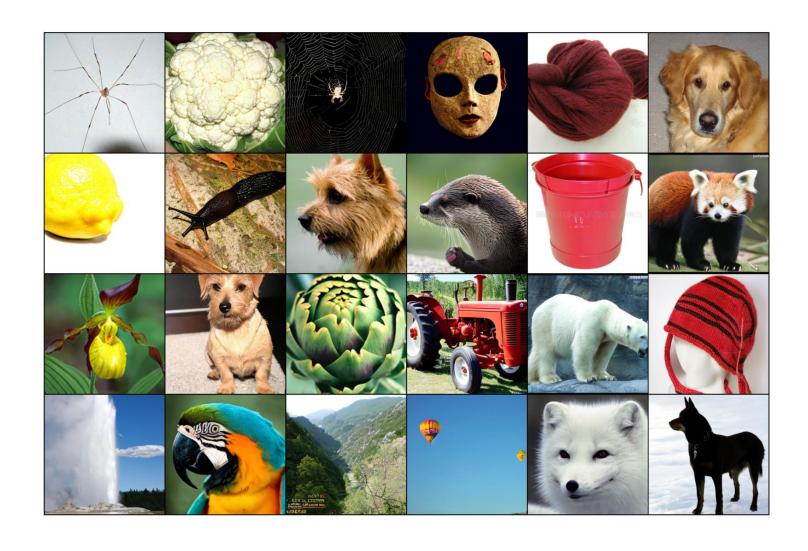
Image Generation with Diffusion

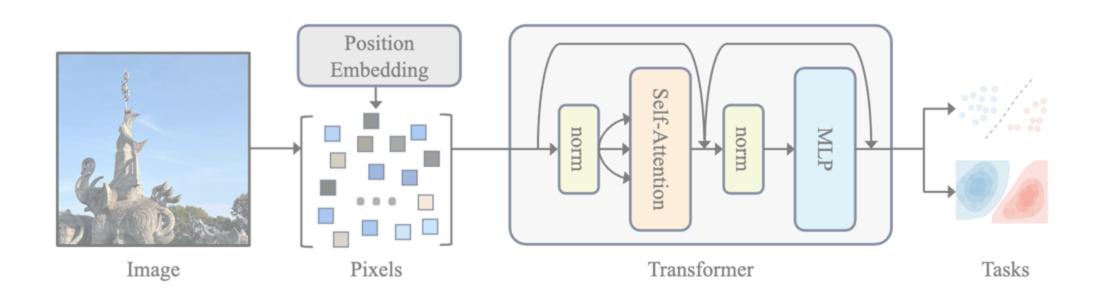
model (400-ep)	FID (↓)	sFID (↓)	IS (†)	precision (†)	recall (†)
DiT-L/2	4.16	4.97	210.18	0.88	0.49
DiT-L/1	4.05	4.66	232.95	0.88	0.49
DiT-L/2, no guidance	8.90	4.63	104.43	0.75	0.61
DiT-XL/2 (Peebles & Xie, 2023), no guidance	10.67	-	-	-	-

epoch	ns model	FID (↓)	sFID (↓)	IS (†)	precision (†)	recall (†)
400	DiT-L/2	4.16	4.97	210.18	0.88	0.49
400	DiT-L/1	4.05	4.66	232.95	0.88	0.49
1400	DiT-L/2	2.89	4.43	242.13	0.85	0.54
1400	DiT-L/1	2.68	4.34	268.82	0.85	0.55

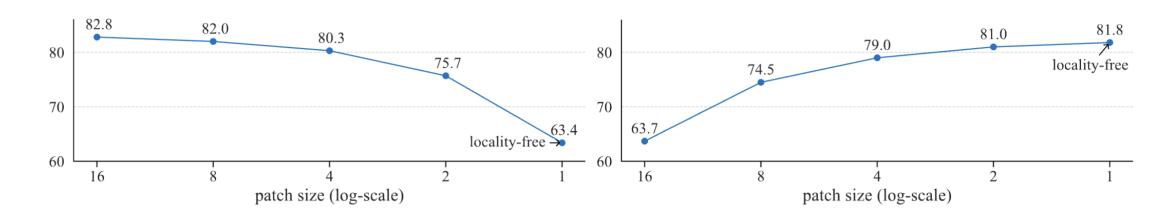
DiT-L/1 shows better generation quality, and favorable for longer training

Qualitative Examples





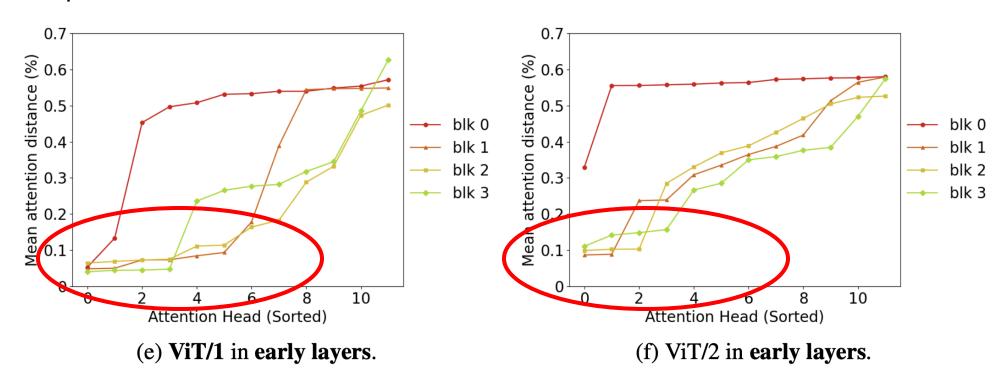
Why Not Discovered Earlier? 1x1 Patch



- Previous (left): fix sequence length, change input/patch size
 ViT w/ pixel tokens is the worst
- Now (right): fix input size, change patch size/sequence length
 ViT w/ pixel tokens is the best

Analysis: Mean Attention Distance

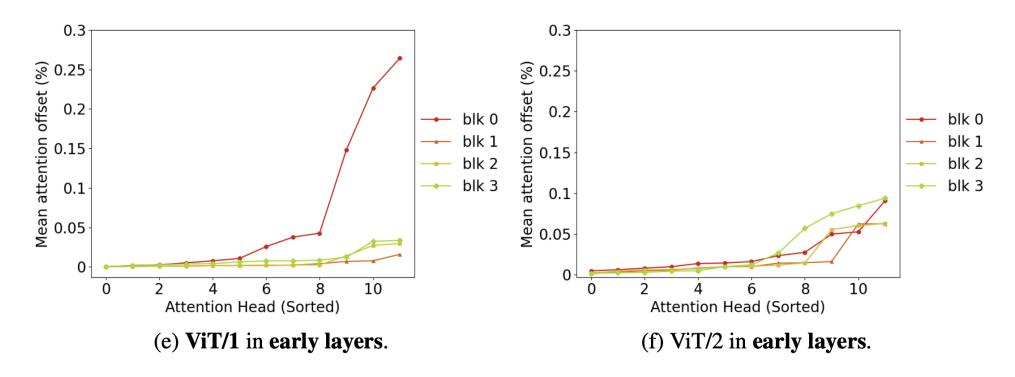
• "Receptive field" size of the attention



ViT w/ pixel tokens focuses more on local patterns in early layers

Analysis: Mean Attention Offset

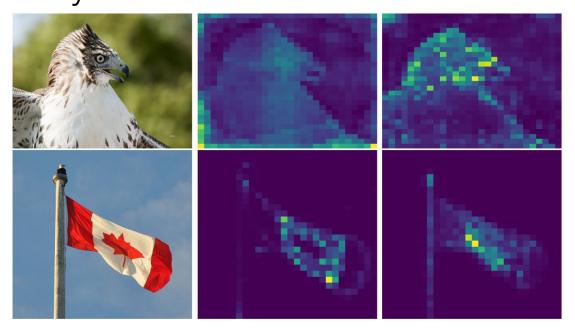
Offset between the attention center and the current location

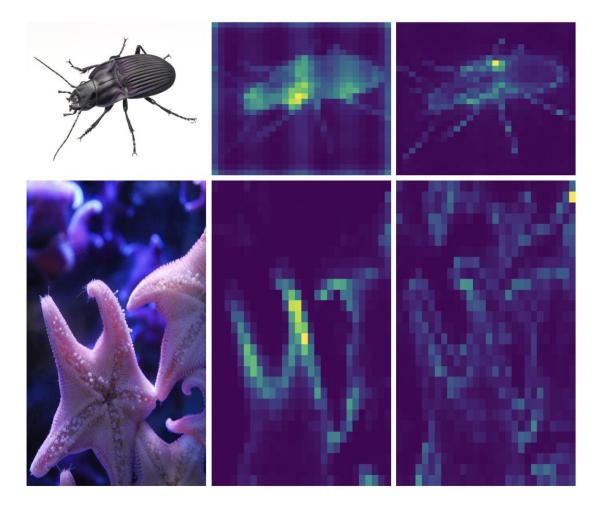


ViT w/ pixel tokens captures long-range relationship in the first layer

Attention Visualization

 ViT w/ pixel tokens can capture foreground of objects in early layers

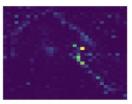


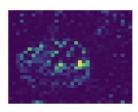


Texture vs. Shape Bias Analysis

• ViT w/ pixel tokens relies more on shape and less on texture

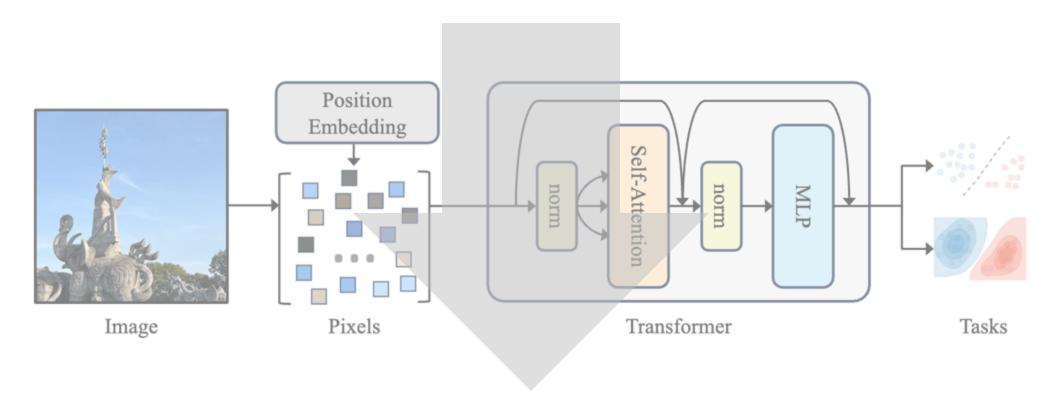
	shape bias
ViT-B/2	56.7
ViT-B/1	57.2





Discussions

- Locality is believed to be fundamental for vision systems
- We find locality is not fundamental
- But it incurs much longer sequence length, and locality-based grouping (patchification) is highly effective in trading off efficiency and accuracy
- So, locality is still a useful prior



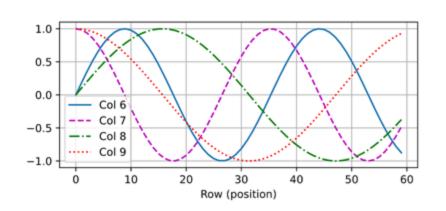
Locality: A Useful Prior for Vision

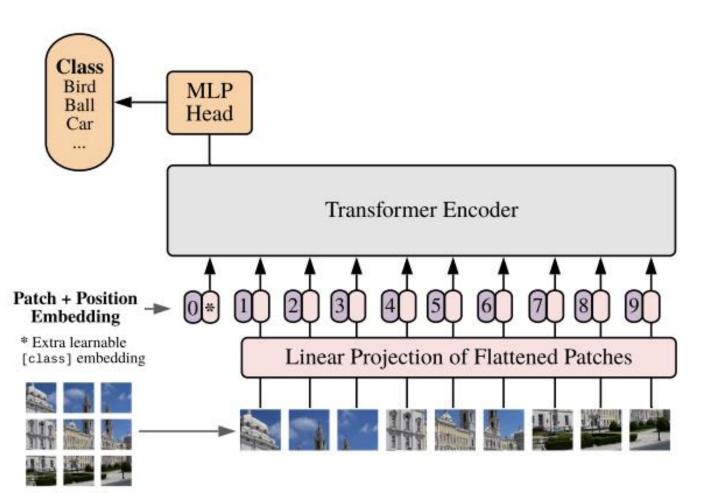
How Useful are Locality Designs in ViT?

Locality Designs in ViT:

- 1. Patchification
- 2. Sinusoidal Position Embedding

We next remove either one of them



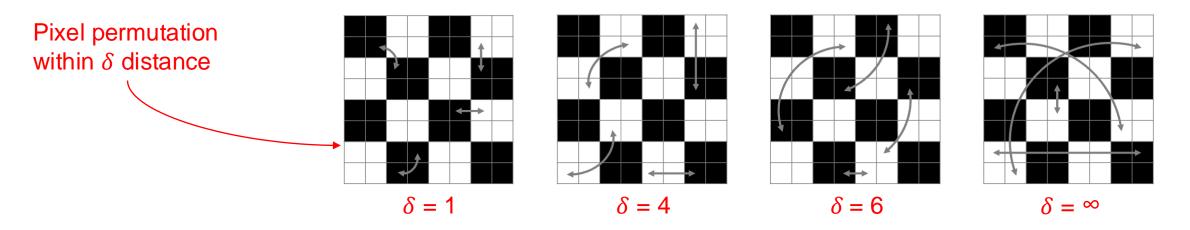


Study on ViT: Position Embedding

PE	sin-cos	learned	none
Acc@1	82.7	82.8	81.2

- Position Embedding:
 - Only a minor drop even without any position embedding
 - Permutation invariant/equivariant with patches is possible

Study on ViT: Patchification

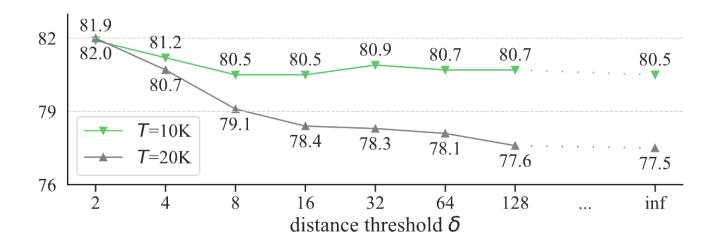


- We test the importance of patchification by:
 - Number of pixel pairs: N
 - Distance upper-bound: δ

Study on ViT: Patchification

T , $\delta = \inf$	Acc@1	$\Delta \mathrm{Acc}$
0	82.8	_
100 (0.4%)	82.1	-0.7
$1 \text{K} \ (4.0\%)$	81.9	-0.9
10K (39.9%)	80.5	-2.3
20K (79.7%)	77.5	-5.3
25K (99.6%)	57.6	-25.2

% is the percentage among all pixel pairs



- Patchification is crucial for the overall design of ViT
- This experiment hurts both locality and translation equivariance

Transformer on Individual Pixels

- Surprisingly can work, and works even better in terms of quality
- This means locality is not a fundamental prior for vision tasks
- But locality is still useful arguably the most effective idea to trade speed with accuracy

