Dynamic Diffusion Transformer, ICLR2025

Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, Yang You

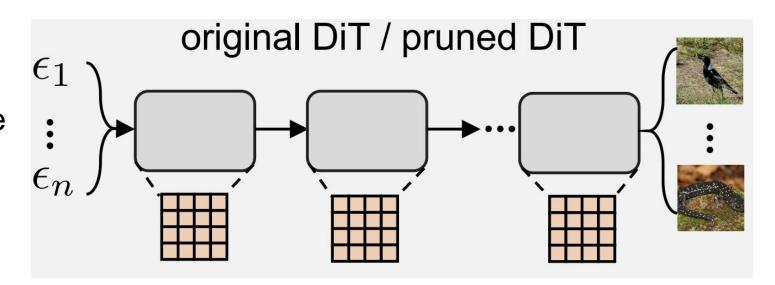
https://github.com/NUS-HPC-AI-Lab/Dynamic-Diffusion-Transformer

 Diffusion Transformer (DiT) has demonstrate significant superiority in visual generation

DiT faces significant efficiency challenges during generation

Previous solution

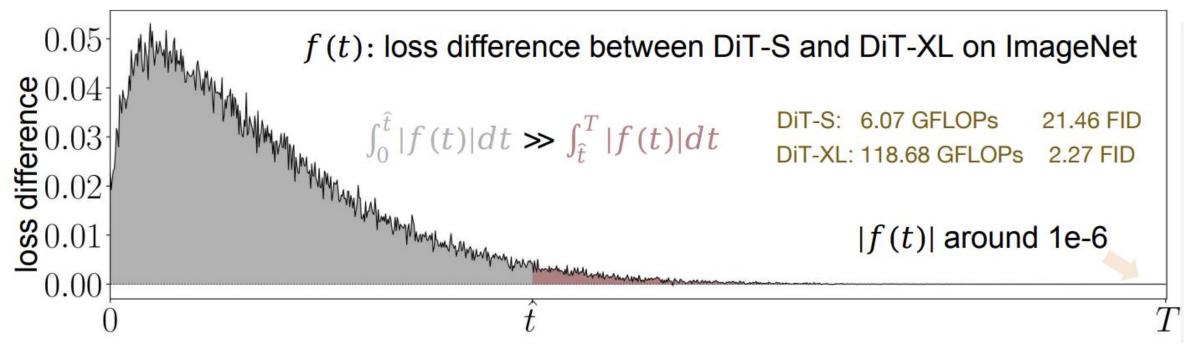
- Efficient diffusion samplers
- Global acceleration e.g. Cache
- Model compression e.g. pruning



Problem

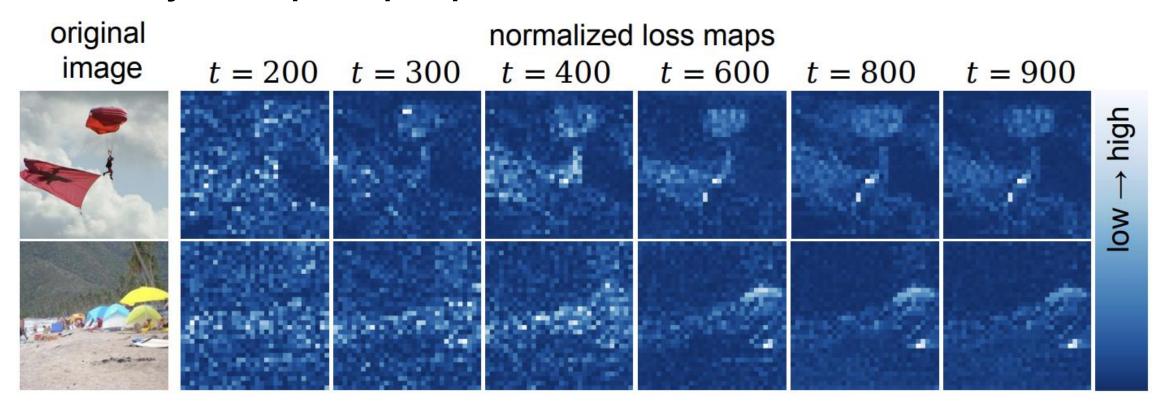
- A fixed model width across all diffusion timesteps
- Same computational cost to every image patch

Redundancy from timestep perspective



- Loss differences diminish substantially for t > tˆ, and even approach negligible levels as t nears the prior distribution (t → T)
- The same architecture across all timesteps, leading to excessive computational costs at timesteps where the task complexity is low.

Redundancy from spatial perspective

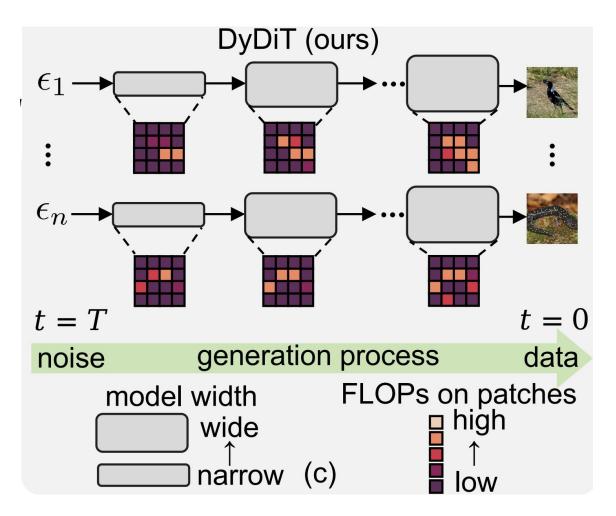


- The difficulty of noise prediction varies across spatial regions
- Uniform computational treatment of all patches introduces redundancy and is likely suboptimal.

We propose Dynamic Diffusion Transformer (DyDiT):

Timestep-wise Dynamic Width (TDW)

Spatial-wise Dynamic Token (SDT)



Methodology

Timestep-wise dynamic width (TDW)

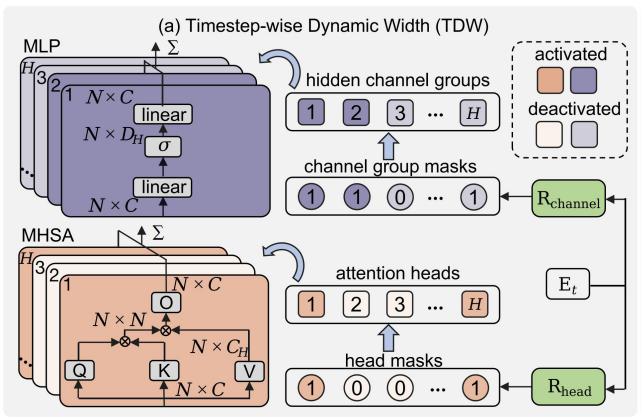
$$\mathbf{S}_{\text{head}} = \mathbf{R}_{\text{head}}(\mathbf{E}_t) \in [0, 1]^H$$

$$\mathbf{S}_{\text{channel}} = \mathrm{R}_{\text{channel}}(\mathbf{E}_t) \in [0,1]^H$$

convered into binary masks \mathbf{M}_{head} $\mathbf{M}_{\text{channel}}$

$$MHSA(\mathbf{X}) = \sum_{h: \mathbf{M}_{head}^h = 1} \mathbf{X}_{attn}^h \mathbf{W}_{O}^{h,:,:},$$

$$\mathrm{MLP}(\mathbf{X}) = \sum_{h: \mathbf{M}_{\mathrm{channel}}^h = 1} \sigma(\mathbf{X}_{\mathrm{hidden}}^h) \mathbf{W}_2^{h,:,:}.$$

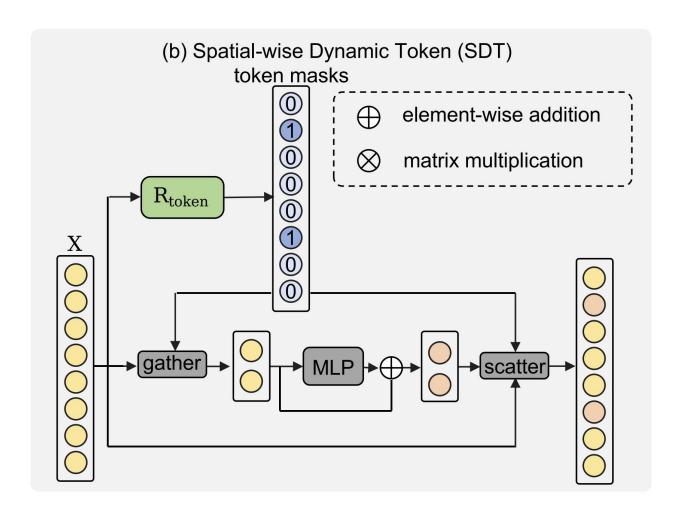


Methodology

Spatial-wise dynamic token (SDT)

$$\mathbf{S}_{\text{token}} = \mathbf{R}_{\text{token}}(\mathbf{X}) \in [0, 1]^N$$

convered into binary mask M_{token}



Methodology

FLOPs-aware end-to-end training

- t ~ Uniform(0, T) during training, approximately covers the entire computation graph.
- FLOPs $F_{
 m dynamic}^{t_b}$ using masks $\{ar{\mathbf{M}}_{
 m head}^{t_b}, ar{\mathbf{M}}_{
 m channel}^{t_b}, ar{\mathbf{M}}_{
 m token}^{t_b}\}$

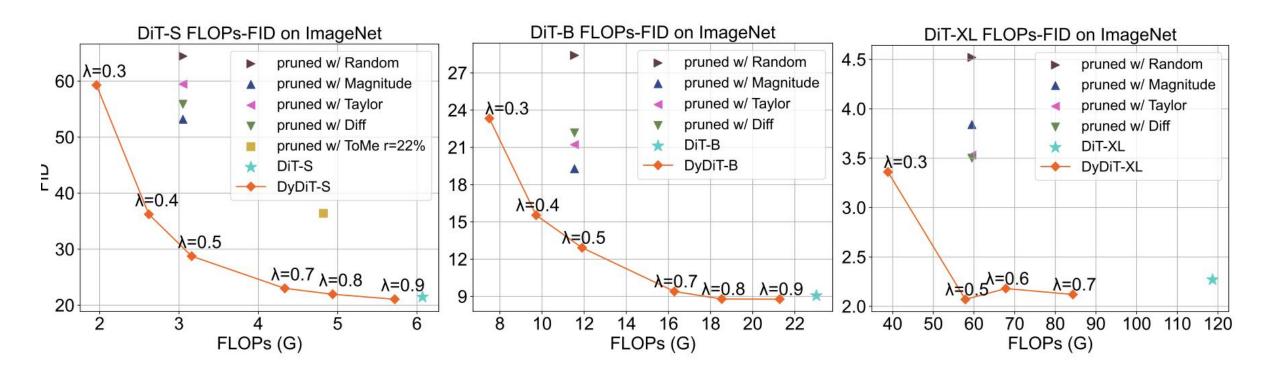
$$\mathcal{L}_{\text{FLOPs}} = \left(\frac{1}{B} \sum_{t_b: b \in [1, B]} \frac{F_{\text{dynamic}}^{t_b}}{F_{\text{static}}} - \lambda\right)^2$$

$$\mathcal{L} = \mathcal{L}_{\text{DiT}} + \mathcal{L}_{\text{FLOPs}}$$

Comparison with state-of-the-art diffusion models

Model	Params. (M) \downarrow	FLOPs (G) ↓	FID↓	sFID↓	IS↑	Precision ↑	Recall ↑
Static $256 imes 256$							
ADM	608	1120	4.59	5.25	186.87	0.82	0.52
LDM-4	400	104	3.95	=	178.22	0.81	0.55
U-ViT-L/2	287	<u>77</u>	3.52	=	-	=	-
U-ViT-H/2	501	113	2.29	-	247.67	0.87	0.48
DiffuSSM-XL	673	280	2.28	4.49	269.13	<u>0.86</u>	0.57
DiM-L	<u>380</u>	94	2.64	-)(—)	-	-
DiM-H	860	210	2.21	-	_	-	~
DiT-L	468	81	5.02	-	167.20	0.75	0.57
DiT-XL	675	118	2.27	4.60	277.00	0.83	0.57
DiffiT	561	114	<u>1.73</u>		276.49	0.80	0.62
SiT-XL	675	118	2.06	4.49	277.50	0.83	0.59
DiMR-XL	505	160	1.70	-	289.00	0.79	0.63
Dynamic $256 imes 256$							
DyDiT-XL $_{\lambda=0.7}$	678	84.33	2.12	4.61	<u>284.31</u>	0.81	0.60
DyDiT-XL $_{\lambda=0.5}$	678	57.88	2.07	4.56	248.03	0.80	0.61

Scaling up ability



Increased computation redundancy with larger models, allowing our method to reduce redundancy without compromising FID

Visualization of dynamic architecture

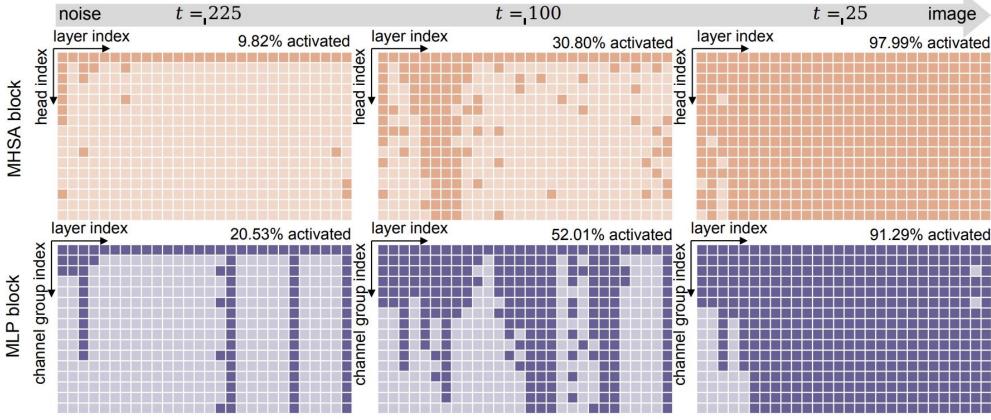


Figure 5: **Visualization of dynamic architecture.**

and

indicates the deactivated and activated heads in an MHSA block, while

and

denotes that the channel group is deactivated or activated in an MLP block, respectively. We conduct 250-step DDPM generation.

Computational cost across different image patches

Figure 6: Computational cost across different image patches. We quantify the FLOPs cost on image patches over the generation process and normalize them into [0, 1] for better clarity.

Compatibility

Table 4: Combination with efficient samplers (Song et al., 2020a; Lu et al., 2022).

Model	250-DDPM		50-DDIM		20-DPM-solver++		10-DPM-solver++	
Wiodei	s/image↓	FID ↓	s/image ↓	FID↓	s/image ↓	FID↓	s/image ↓	FID ↓
DiT-XL	10.22	2.27	2.00	2.26	0.84	4.62	0.42	11.66
DyDiT-XL $_{\lambda=0.7}$	7.76	2.12	1.56	2.16	0.62	4.28	0.31	11.10
DyDiT-XL $_{\lambda=0.5}$	5.91	2.07	1.17	2.36	0.46	4.22	0.23	11.31

Table 18: Combined with DeepCache. "interval" denotes the interval of cached timestep in DeepCache (Ma et al., 2023).

Model	interval	s/image↓	FID↓
DiT-XL	0	10.22	2.27
DiT-XL	2	5.02	2.47
DiT-XL	5	2.03	6.73
DyDiT-XL $_{\lambda=0.5}$	0	5.91	2.08
DyDiT-XL $_{\lambda=0.5}$	2	2.99	2.43
DyDiT-XL $_{\lambda=0.5}$	3	2.01	3.37

Thanks!

https://github.com/NUS-HPC-AI-Lab/Dynamic-Diffusion-Transformer