MIRAGE: Evaluating and Explaining Inductive Reasoning Process in Language Models

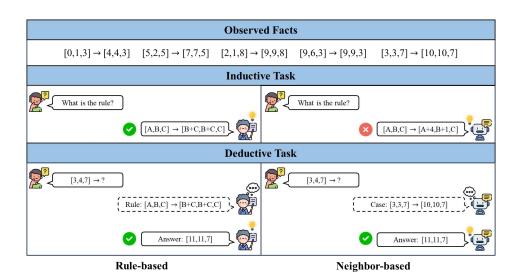
Jiachun Li^{1,2}, Pengfei Cao^{1,2}, Chenhao Wang^{1,2}, Zhuoran Jin^{1,2}, Yubo Chen^{1,2}, Kang Liu^{1,2}, Jun Zhao^{1,2}

¹ School of Artificial Intelligence, University of Chinese Academy of Sciences ² National Laboratory of Pattern Recognition, Institute of Automation, CAS

Background

■ Inductive Reasoning

- □ Inductive reasoning refers to the ability of intelligent entities to **generalize rules** from limited observations and **apply them to unseen examples**.
 - Rule Induction (Inductive)
 - □ E.g. The sum of the interior angles of a triangle is 180° -> the sum of the interior angles of an n-gon is (n-2) * 180°
 - Example Inference (Deductive)
 - ■E.g. The sum of the interior angles of a triangle is 180° -> the sum of the interior angles of a pentagon is 540°



Motivation

■ Limitations of Related Works

- □ Previous works lack comprehensive evaluation, most works have only one evaluation task:
 - Inductive task on collected rules
 - Deductive task on specific test samples
- □ Previous works lack flexible test data, hindering a deeper analysis of the model's reasoning mechanisms.
 - Fixed data distribution
 - Fixed test difficulty
 - Fixed task form

■ Dataset Construction Framework

□ Rule Generation

■ Construct different abstract rules based on basic transformation functions

□ Fact Generation

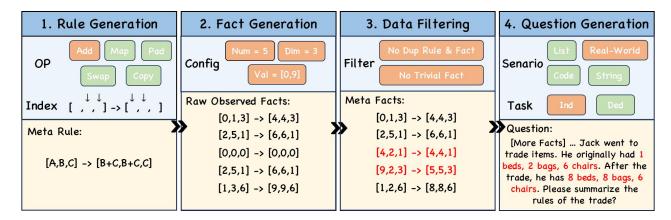
■ Instantiate the abstract rules to generate any observations and test metadata

■ Data Filtering

■ Filter low-quality and noisy data based on certain heuristic rules

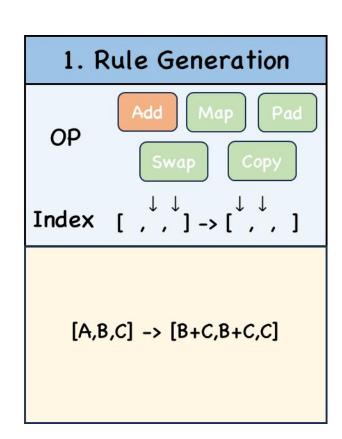
□ Problem Generation

■ Place the metadata into different reasoning scenarios to generate specific test questions in various forms



Rule Generation

- \square Formalize the rule as functions f in vector space, including five operations:
 - Add: Add certain elements together $([x,y,z] \rightarrow [x,x+y,z])$
 - Copy: Copy certain elements to other positions $([x,y,z] \rightarrow [x,x+y,z])$
 - Map: Apply linear transformations to certain elements ($[x,y,z] \rightarrow [x, ky+b, z]$)
 - Pad: Fill certain elements' positions with constants ([x,y,z] \rightarrow [x, 1, z])
 - Swap: Swap the positions of elements ($[x,y,z] \rightarrow [y,x,z]$)
- By mixing the rules generated from all the above operations, we form the rule library for the dataset.

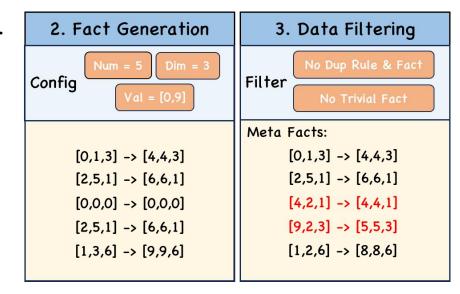


■ Fact Generation

- For each rule f, we randomly generate input vectors x and use f to generate the corresponding output y, hence constructing a collection of observation and test examples (x, y) as the fact library.
- \square We control the test difficulty by adjusting the count N of the observation examples and the dimensionality D of the vectors.

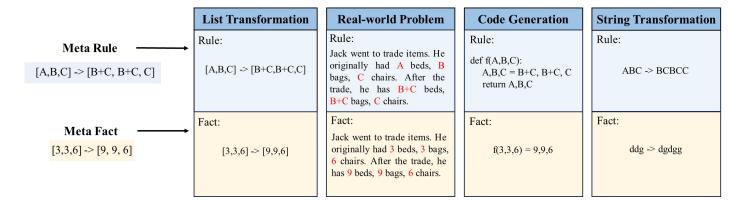
Data Filtering

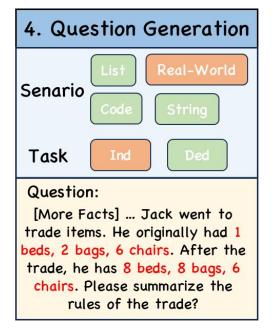
- □ Use heuristic rules to filter the generated data
 - E.g. Remove duplicate rules and facts.



Question Generation

- □ Apply the generated rules and facts to different scenarios, including:
 - List Transformation (LT): Perform inductive operations on lists;
 - Real-World Problems (RP): Problems described in natural language;
 - Code Generation (CG): Generate corresponding Python functions based on input facts;
 - String Transformation (ST): Replace numeric operations with string operations.
- □ Design two tasks to evaluate the entire inductive reasoning process:
 - Rule Induction (RI): The model is required to correctly generate abstract rules;
 - Example Inference (EI): The model is required to correctly answer the test questions.





Model Evaluation

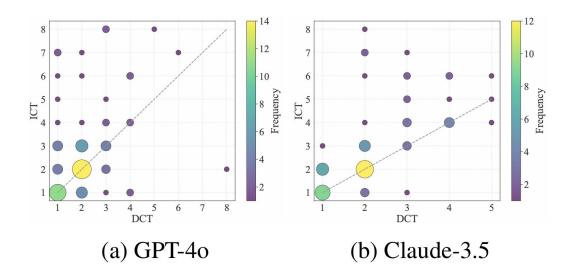
Overall Results

- □ The inductive reasoning ability of LLMs is relatively weak, especially in real-world scenarios (RP).
 - GPT-40 achieves only 0.16 and 0.17 accuracy on RP problems (D = 8).
- □ The deductive ability (EI) of LLMs is generally stronger than their inductive ability (RI).
 - Unlike humans, the inductive reasoning performance of LLMs does not ultimately depend on whether they can abstract the correct rules.

Model	Task	D=3				D=5				D=8			
		LT	RP	CG	ST	LT	RP	CG	ST	LT	RP	CG	ST
Llama2-13B	RI	0.01	0.00	0.00	0.03	0.01	0.01	0.00	0.21	0.00	0.01	0.00	0.10
	EI	0.26	0.11	0.25	0.22	0.13	0.03	0.14	0.25	0.06	0.01	0.06	0.19
Llama3-8B	RI	0.15	0.11	0.19	0.19	0.23	0.04	0.14	0.22	0.16	0.02	0.08	0.21
	EI	0.30	0.15	0.25	0.25	0.20	0.12	0.25	0.29	0.09	0.11	0.16	0.24
GPT-40	RI	0.41	0.32	0.38	0.32	0.35	0.21	0.44	0.30	0.33	0.16	0.41	0.24
	EI	0.68	0.37	0.61	0.56	0.58	0.25	0.64	0.39	0.42	0.17	0.49	0.29
GPT-4	RI	0.47	0.29	0.41	0.28	0.58	0.22	0.56	0.27	0.46	0.15	0.45	0.23
	EI	0.68	0.37	0.61	0.57	0.63	0.29	0.71	0.44	0.42	0.21	0.64	0.30
Claude-3.5	RI	0.44	0.35	0.34	0.46	0.22	0.20	0.38	0.33	0.24	0.13	0.38	0.26
	EI	0.79	0.45	0.62	0.58	0.65	0.33	0.76	0.45	0.46	0.24	0.59	0.30

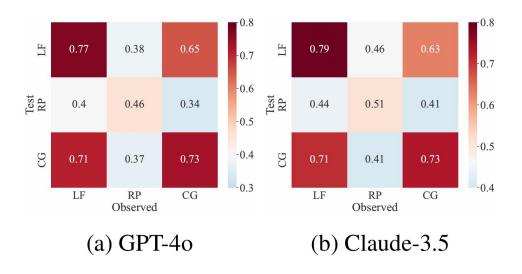
Langauge Models are Poor Rule-based Reasoners

- □ Compute the minimum number of observed examples required to correctly induce the rules (ICT) and answer the test questions (DCT).
 - If reasoning is based on rules, ICT should be less than DCT for most examples
- □ The inductive reasoning of LLMs on new examples **does not rely on successful rule induction**.



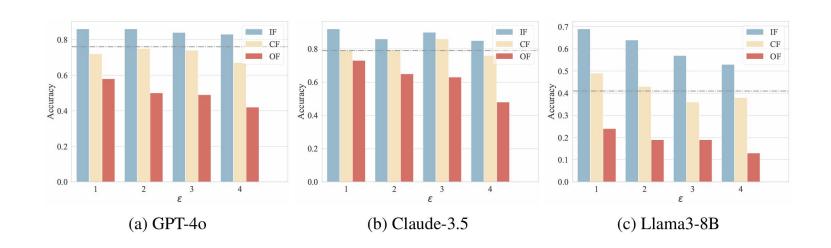
■ Inductive Reasoning across Different Task Format

- □ For a fixed observed facts, test the model's performance under other task formats.
- LLM's inductive reasoning rely on the structural similarity between observed and test examples



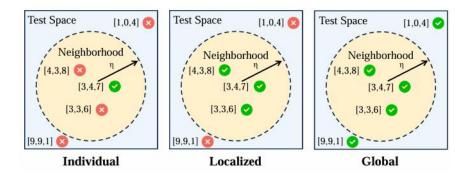
Langauge Models are Good Neighbor-based Reasoners

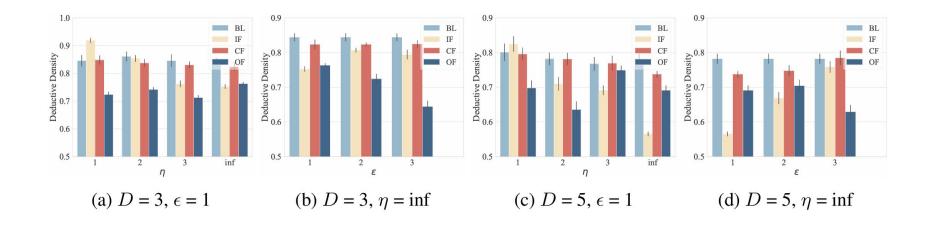
- □ We categorize observed facts into three types based on their distance to the test input:
 - In-neighborhood Fact (IF): All corresponding components are in the neighborhood
 - Cross-neighborhood Fact (CF): Some of the components are in the neighborhood
 - Out-neighborhood Fact (OF): None of the components are in the neighborhood
- □ The closer the observed examples are to the test examples, the better the reasoning performance



■ Effective Scope of Neighbor-based Reasoning

- □ Sample multiple additional test examples within a certain radius, calculate the average accuracy to evaluate the effective scope;
- ☐ The scope of neighbor-based reasoning is local;
- ☐ The more dispersed of the neighbor facts distribution, the larger the effective scope.





Thanks

