IMPROVED FINITE-PARTICLE CONVERGENCE RATES FOR STEIN VARIATIONAL GRADIENT DESCENT

KRISHNA BALASUBRAMANIAN (UC DAVIS) SAYAN BANERJEE (UNC CHAPEL HILL) PROMIT GHOSAL (U CHICAGO)

ICLR, 2025

INTRODUCTION: PROBLEM SETUP

Sample from density $\pi \propto e^{-V}$ where potential $V: \mathbb{R}^d \to \mathbb{R}$.

STEIN VARIATIONAL GRADIENT DESCENT (LIU AND WANG, 2016)

- \triangleright Consider N particles x_1, \ldots, x_N and a symmetric, positive definite, bi-variate function $K(\cdot, \cdot)$.

$$x_i \leftarrow x_i - \frac{\eta}{N} \left(\sum_{j=1}^N K(x_i, x_j) \nabla V(x_j) - \sum_{j=1}^N \nabla K(x_i, x_j) \right)$$

where η is the step size.

 Deterministic interacting particle system (as opposed to randomized MCMC algorithms).

SMALL STEP-SIZE AND MEAN-FIELD LIMIT

Particle Flow: The small step-size limit $(\eta \to 0)$ takes the following form:

$$\frac{dx_i(t)}{dt} = \underbrace{\frac{1}{N} \sum_{j=1}^{N} \nabla_2 K(x_i(t), x_j(t))}_{Repulsive \ term} - \underbrace{\frac{1}{N} \sum_{j=1}^{N} K(x_i(t), x_j(t)) \nabla V(x_j(t))}_{Weighted \ average \ of \ potential}$$

Mean-field Limit: As $N \to \infty$, empirical distribution of $x_i(t)$'s

converges weakly to μ_t (Lu, Lu, Nolen, 2021) where $\mu_t(\mathbf{x}) = \rho_t(\mathbf{x}) d\mathbf{x}$ and,

$$\partial_t \rho_t(\mathbf{x}) = \underbrace{\nabla \cdot \left(\rho_t(\mathbf{x}) \int K(\mathbf{x}, \mathbf{y}) (\nabla \rho_t(\mathbf{y}) + \rho_t(\mathbf{y}) \nabla V(\mathbf{y})) d\mathbf{y} \right)}_{\nabla \cdot (\nabla \rho_t(\mathbf{x}) + \rho_t(\mathbf{x}) \nabla V(\mathbf{x})) = \text{WGF}}$$

The above PDE is the gradient flow of KL divergence w.r.t. the Stein metric in the space of probability distributions.

SMALL STEP-SIZE AND MEAN-FIELD LIMIT

Particle Flow: The small step-size limit $(\eta \to 0)$ takes the following form:

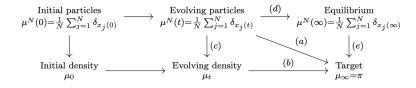
$$\frac{dx_i(t)}{dt} = \underbrace{\frac{1}{N} \sum_{j=1}^{N} \nabla_2 K(x_i(t), x_j(t))}_{Repulsive \ term} - \underbrace{\frac{1}{N} \sum_{j=1}^{N} K(x_i(t), x_j(t)) \nabla V(x_j(t))}_{Weighted \ average \ of \ potential}$$

Mean-field Limit: As $N \to \infty$, empirical distribution of $x_i(t)$'s converges weakly to μ_t (Lu, Lu, Nolen, 2021) where $\mu_t(\mathbf{x}) = \rho_t(\mathbf{x}) d\mathbf{x}$ and,

$$\partial_t \rho_t(\mathbf{x}) = \underbrace{\nabla \cdot \left(\rho_t(\mathbf{x}) \int K(\mathbf{x}, \mathbf{y}) (\nabla \rho_t(\mathbf{y}) + \rho_t(\mathbf{y}) \nabla V(\mathbf{y})) d\mathbf{y}\right)}_{\nabla \cdot (\nabla \rho_t(\mathbf{x}) + \rho_t(\mathbf{x}) \nabla V(\mathbf{x})) = \text{WGF}}$$

The above PDE is the gradient flow of KL divergence w.r.t. the Stein metric in the space of probability distributions.

SVGD CONVERGENCE



- (a) Unified convergence of the empirical measure for N < ∞ particles to the continuous target as time t and N jointly grow to infinity;
- (b) Convergence of mean-field SVGD to the target distribution over time;
- (c) Convergence of the empirical measure for finite particles to the mean-field distribution at any finite given time $t \in [0, \infty)$;
- (d) Convergence of finite-particle SVGD to equilibrium over time;
- (e) Convergence of the empirical measure for finite particles to the continuous target at time $t=\infty.$

PRIOR WORK

- → Most of the prior approach towards this was based on combining (b) with (c).
- Liu (2017), Korba et al. (2020), Chewi et al. (2020), Salim et al. (2022), Sun et al. (2023) and Duncan et al. (2023) showed the convergence of mean-field SVGD in (b).
- ▶ Lu et al. (2019), Gorham et al. (2020) and Korba et al. (2020) obtained time-dependent mean-field convergence in (c) under various assumptions using techniques from partial differential equations.

PRIOR WORK

- Shi & Mackey (2024) obtained refined results for (c) and combined them with (b) to get the first unified convergence (a) in terms of KSD.
- \triangleright Rate is rather slow rate of order $1/\sqrt{\log \log N}$.
 - ▶ For the finite-particle versions there is no gradient structure to the dynamics.
 - ▶ This leads to the slow convergence rate.

WHAT WE DO

- ▶ For Nonparametric SVGD, we directly characterize (a).
 - ▶ Key insight: track evolution of joint density rather than the empirical measure.

▷ Tractability of the mean-field SVGD: Has a (projected) gradient structure which leads to the following monotonicity property of the KL-divergence:

$$\partial_t \mathsf{KL}(\mu_t||\pi) = -\mathsf{KSD}^2(\mu_t||\pi), \quad t \ge 0.$$

- ▶ The non-negativity of KL then leads to bounds on the KSD.
- ⊳ KSD stands for Kernel Stein Discrepancy (widely used in ML/MCMC communities). Intuitively: kernelized version of Fisher information.

- \triangleright Key insight: Track the evolution of relative entropy of *joint* density of the *N*-particles with respect to $\pi^{\otimes N}$.
- ▷ Result: Time derivative of this relative entropy has:
 - ▶ Negative part: N times the expected KSD^2 of the empirical measure at time t with respect to π .
 - ▶ Positive part: can be separately handled and shown to be small in comparison to the negative part
- Novel connection between the joint particle dynamics and the empirical measure evolution mimicking the mean-field system.

Theorem: Define

$$\mu^{N}(t)\coloneqqrac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}(t)}, t\geq0$$
 and

$$\mu_{\mathrm{av}}^{N}(dx) := \frac{1}{N} \int_{0}^{T=N} \mu^{N}(t, dx) dt.$$

Then

$$\mathsf{KSD}^2(\mu_{\mathrm{av}}^{(N)}\|\pi) \leq \frac{\sup_L \frac{\mathsf{KL}(p^L(0)\|\pi^{\otimes L})}{L} + C^*}{N},$$

$$C^* := \sup_{z} \left(\nabla_2 K(z, z) \cdot \nabla V(z) + K(z, z) \Delta V(z) - \Delta_2 K(z, z) \right)$$

We make the following regularity assumptions.

- ▶ Kernel *K* and up to order 2 derivatives are bounded.
- ▶ For some A > 0, $\alpha \in [0, 1/2]$, $\|\nabla V(x)\| \le AV(x)^{\alpha}$ for all $x \in \mathbb{R}^d$. Parameter α interpolates between exponential tails and Gaussian tails as α varies from 0 to 1/2.
- ▷ Initial entropy bound: $KL(p(0)||\pi^{\otimes N}) \lesssim Nd$ for some constant $C_{KL} > 0$.

Theorem: Setting

$$\eta \approx d^{-(\frac{1+\alpha}{2(1-\alpha)}\vee 1)} N^{-\frac{1+\alpha}{1-\alpha}} \qquad T \approx N^{\frac{2}{1-\alpha}},$$

we have

$$\frac{1}{T}\sum_{n=0}^{T-1}\mathsf{KSD}^2\left(\mu^{\mathsf{N}}(n)||\pi\right)=O\left(\frac{d^{\left(\frac{3-\alpha}{2(1-\alpha)}\vee 1\right)}}{\mathsf{N}}\right).$$

PROPOGATION OF CHAOS

Define average occupancy measure of k particles out of total N particles as $\bar{\mu}_k^N(dx_1,\ldots,dx_k) =$

$$\frac{1}{N} \int_0^N \mathbb{P}(x_1(t) = x_1 + dx_1, \dots, x_k(t) = x_k + dx_k) dt.$$

Theorem: $W_2^2(\bar{\mu}_k^N, \pi^{\otimes k}) \to 0$ as $N \to 0$.

REMARKS

- \triangleright POC: The particle marginal laws at a fixed time become asymptotically independent as $N \to \infty$.
- ▷ Prior works show POC only for "short-times", i.e., $t = t_N = O(\log \log N)$ when the particle marginal laws are not necessarily close to π .
- \triangleright Our result POC extends to the time interval [0, N] ("long-time" POC) and the time-averaged particle trajectories essentially produce i.i.d. samples from π .

OPEN QUESTION

 \triangleright Is there uniform-in-time propagation for chaos for SVGD?

Thank you! Question? Email: kbala@ucdavis.edu