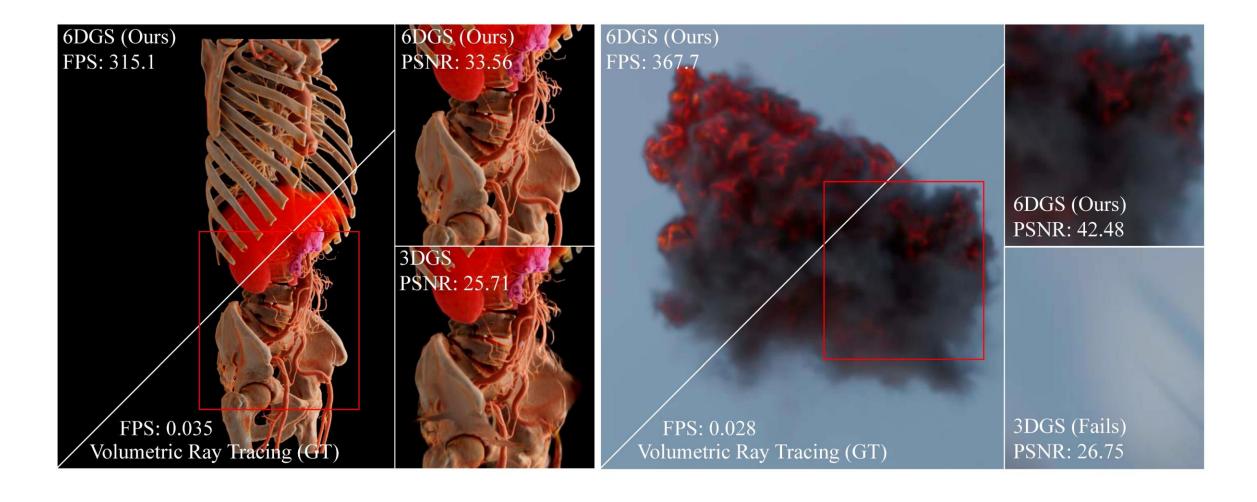
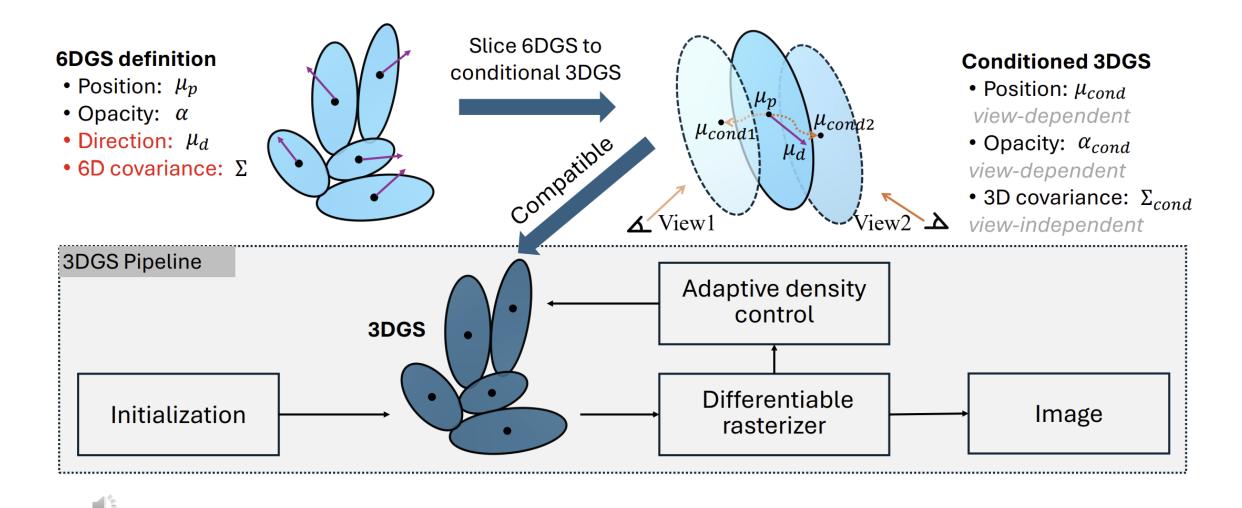


6DGS: Enhanced Direction-Aware Gaussian Splatting for Volumetric Rendering


Zhongpai Gao, Benjamin Planche, Meng Zheng, Anwesa Choudhuri, Terrence Chen, Ziyan Wu

United Imaging Intelligence, Boston MA, USA

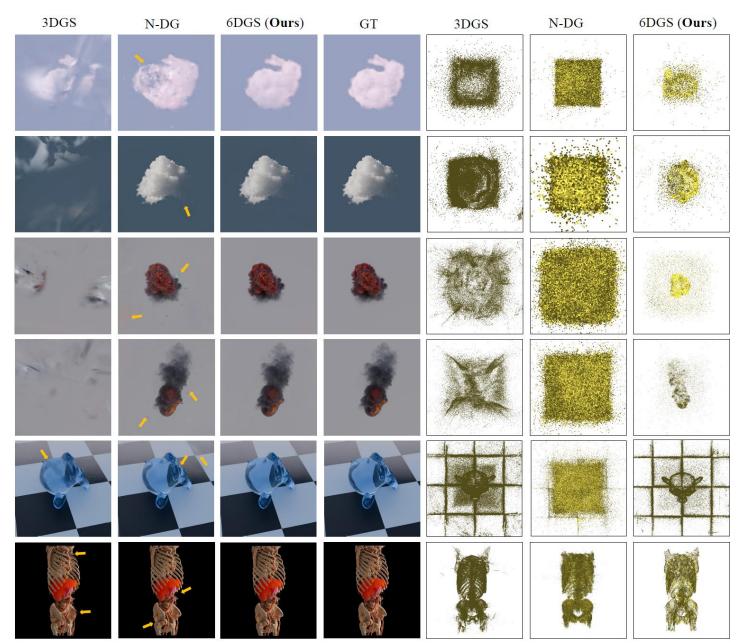
Real-time Rendering of View-dependent Effects



Motivations

- Real-Time Rendering Challenge: Achieve high-quality, physically-based rendering in real time, especially when handling view-dependent effects like specular highlights and reflections.
- Shortcomings of 3DGS: Existing 3D Gaussian splatting accelerates rendering but struggles to model view-dependent phenomena due to its purely spatial representation.
- Inefficiencies in N-DG: Although N-D Gaussian can better capture view-dependent effects, the current representation and optimization schemes are suboptimal and inefficient.
- Enhanced Modeling Needs: There is a need to improve the representation, leveraging additional directional information to better capture fine details and complex lighting interactions.
- Seamless Integration: A solution that remains compatible with the 3DGS framework is desirable, enabling easy adoption and immediate performance benefits without extensive modifications.

Our 6DGS Compatible with the Existing 3DGS Pipeline


Experiments

Datasets:

- public <u>Synthetic NeRF</u> dataset (Mildenhall et al., 2020)
- custom <u>6DGS-PBR</u> dataset (physically-based rendering)
- Three real-world datasets in Supplementary
 - Deep Blending (Hedman et al., 2021),
 - Tanks & Temples (Knapitsch et al., 2017)
 - Shiny (Wizadwongsa et al., 2021)

Results – Qualitative on 6DGS-PBR

Results – Quantitative on 6DGS-PBR

	3DGS			N-DG			6DGS (Ours)		
	PSNR↑	SSIM↑	# points↓	PSNR↑	SSIM↑	# points↓	PSNR↑	SSIM↑	# points↓
bunny-cloud	30.75	0.988	21,074	35.48	0.990	530,711	41.57	0.993	6,660
cloud	29.70	0.972	58,233	42.40	0.991	98,149	40.41	0.991	12,657
explosion	26.75	0.953	51,140	40.16	0.989	207,778	42.48	0.991	17,133
smoke	28.55	0.969	60,533	41.61	0.992	212,050	40.61	0.992	10,762
suzanne	23.70	0.901	270,001	26.00	0.921	232,145	27.03	0.928	174,746
ct-scan	25.71	0.917	229,683	30.96	0.952	1,073,082	33.56	0.965	182,981
avg	27.53	0.950	115,111	36.10	0.973	392,319	37.61	0.977	67,490

	bunny-cloud	cloud	explosion	smoke	suzanne	ct-scan avg
Image size	1408	1408	1024	1536	1408	1024 N/A
3DGS	49.1	74.4	161.9	96.7	42.0	259.7 114.0
N-DG	27.0	90.7	65.6	50.4	46.9	13.3 49.0
6DGS (Ours)	178.4	178.2	120.2	138.6	34.7	276.8 154.5
6DGS-flash (Ours)	315.3	318.0	367.7	345.5	295.9	315.1 326.3

Results – Quantitative on Synthetic NeRF

	3DGS			N-DG			6DGS (ours)		
	PSNR↑	SSIM↑	# points↓	PSNR↑	SSIM↑	# points↓	PSNR↑	SSIM↑	# points↓
chair	35.91	0.987	272,130	30.87	0.956	108,091	35.49	0.986	223,747
drums	26.15	0.955	346,245	24.37	0.927	106,756	26.45	0.953	250,267
ficus	34.49	0.987	295,997	29.82	0.965	59,052	33.45	0.984	197,741
hotdog	37.72	0.985	147,098	33.89	0.971	82,261	37.90	0.985	102,451
lego	35.79	0.983	322,704	29.85	0.948	151,291	35.25	0.980	233,227
materials	29.98	0.960	282,334	26.86	0.938	77,206	30.71	0.967	222,209
mic	35.47	0.992	310,608	29.99	0.968	40,848	36.13	0.992	272,052
ship	30.52	0.905	328,053	26.35	0.862	337,294	30.72	0.903	270,163
avg	33.25	0.969	288,146	29.00	0.942	120,350	33.26	0.969	221,482

Results – Ablation Study

		bunny-cloud	cloud	explosion	smoke	suzanne	ct-scan	avg
	No-SH	38.13	37.39	41.05	38.52	26.76	33.27	35.85
	No- $f_{ m opa}$	38.15	36.16	35.49	35.52	24.88	29.65	33.31
	No- $\lambda_{ m opa}$	39.12	39.86	40.55	36.88	26.92	32.99	36.05
PSNR	$\tau = 0.005$	40.15	40.46	43.14	41.04	27.09	33.45	37.56
	$\lambda_{\rm opa} = 0.35$	40.47	40.73	42.69	40.45	27.15	33.42	37.49
	learnable- $\lambda_{\rm opa}$	41.57	40.42	42.48	40.61	27.03	33.56	37.61
# points	No-SH	6,196	11,356	16,465	9,929	171,472	177,204	65,437
	No- $f_{\rm cond}$	11,698	31,999	39,736	35,023	349,716	320,879	131,509
	No- $\lambda_{ m opa}$	4,860	11,736	13,582	10,540	158,041	154,997	58,959
	$\tau = 0.005$	63,042	51,883	61,507	49,422	301,614	405,332	155,467
	$\lambda_{\rm opa} = 0.35$	6,830	12,454	17,051	10,570	172,373	181,539	66,803
	learnable- λ_{opa}	6,660	12,657	17,133	10,762	174,746	182,981	67,490

Intelligence

Conclusion

- Introduced 6D Gaussian Splatting (6DGS) to integrate directional information and enhance the modeling of position and opacity.
- Achieved superior rendering quality and real-time performance with significantly fewer Gaussian points compared to existing methods.
- Demonstrated compatibility with the established 3DGS framework, enabling seamless integration into current systems.
- Provided a theoretical analysis of conditional Gaussian parameters, offering insights into view-dependent effects.
- Validated the approach through extensive experiments on both custom physically-based rendering datasets and public datasets.
- Future work will extend the framework to dynamic scenes, enabling efficient real-time rendering of moving objects.

