

Training-Free Dataset Pruning For Instance Segmentation

Yalun Dai^{1,2,3}, Lingao Xiao^{1,2,4}, Ivor W. Tsang^{1,2,3}, Yang He^{1,2,4*}

¹CFAR, Agency for Science, Technology and Research, Singapore

²IHPC, Agency for Science, Technology and Research, Singapore

³Nanyang Technological University, ⁴National University of Singapore

daiy0018@e.ntu.edu.sg, xiao_lingao@u.nus.edu

{Ivor_Tsang, He_Yang}@cfar.a-star.edu.sg

Yalun Dai

Motivation	Train	ing-Free Dataset Pruning]	Experiment Results				
Motivation	Shape Complexity Score (SCS)	Scale-Invariant SCS	Class-Balanced SCS	COCO	Cityscapes	VOC			

Dataset Pruning

Pruning

Full CIFAR-100 Dataset (size = 50,000)

Pruned Dataset (size = 10,000)

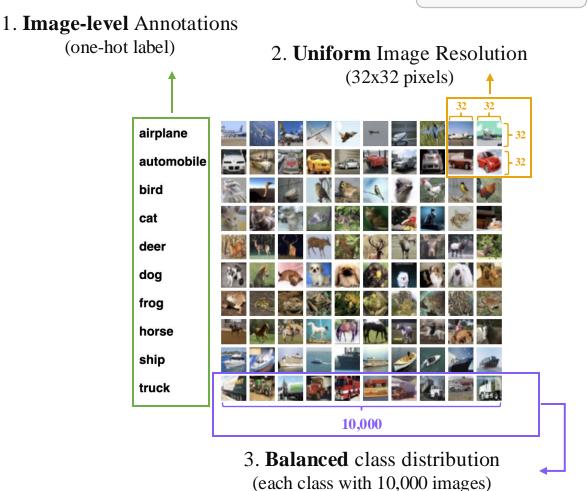
Similar training accuracy

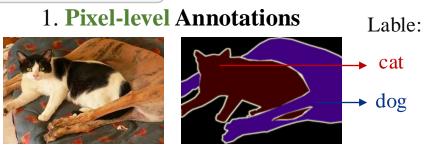
Dataset Pruning has **NOT** been explored in **instance segmentation** task.

Classification

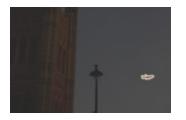
VS

Instance Segmentation

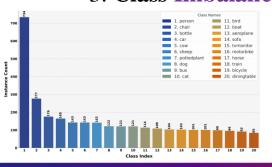




2. Variable Instance Areas



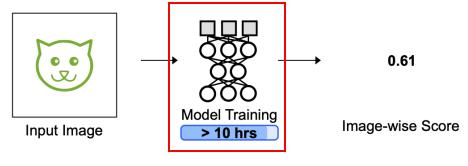
3. Class Imbalance



(Distribution of number of class instances on VOC.)

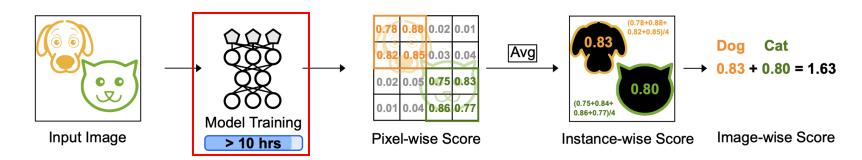
Fundamental issues inherent in existing methods.

- 1) Existing Dataset Pruning on Classification.
 - a. Infeasible for instance segmentation.



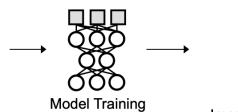
Infeasible!

- 2) Our Adaptation on Instance Segmentation.
 - a. Slow speed.
 - b. Limited generalization.
 - c. **Impractical** for segmentation.



Feasible but still **Inefficient!**

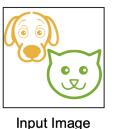
1) Existing Dataset Pruning on Classification.

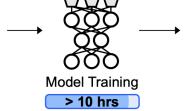


0.61

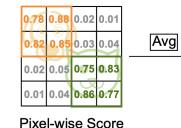
Image-wise Score

- a. Infeasible.
- 2) Our Adaptation on Instance Segmentation.
- a. Feasible but still **Inefficient**.





> 10 hrs

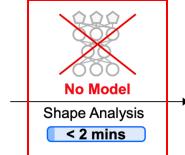


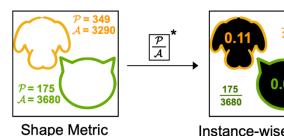
0.83 Dog Cat

0.83 + 0.80 = 1.63

Instance-wise Score Image-wise Score

3) Our Training-Free Dataset Pruning (TFDP) on Instance Segmentation.



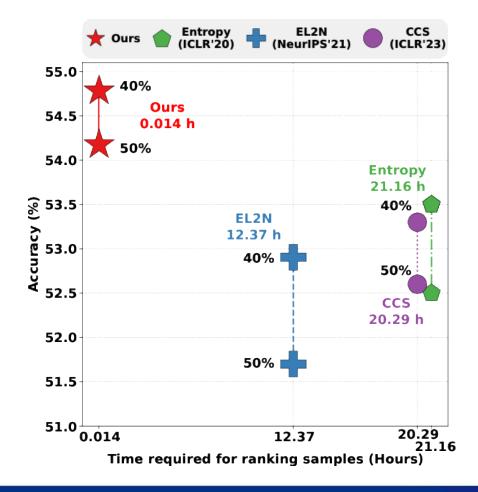


Instance-wise Score Image-wise Score

- a. Faster speed.
- b. **Better** generalization.

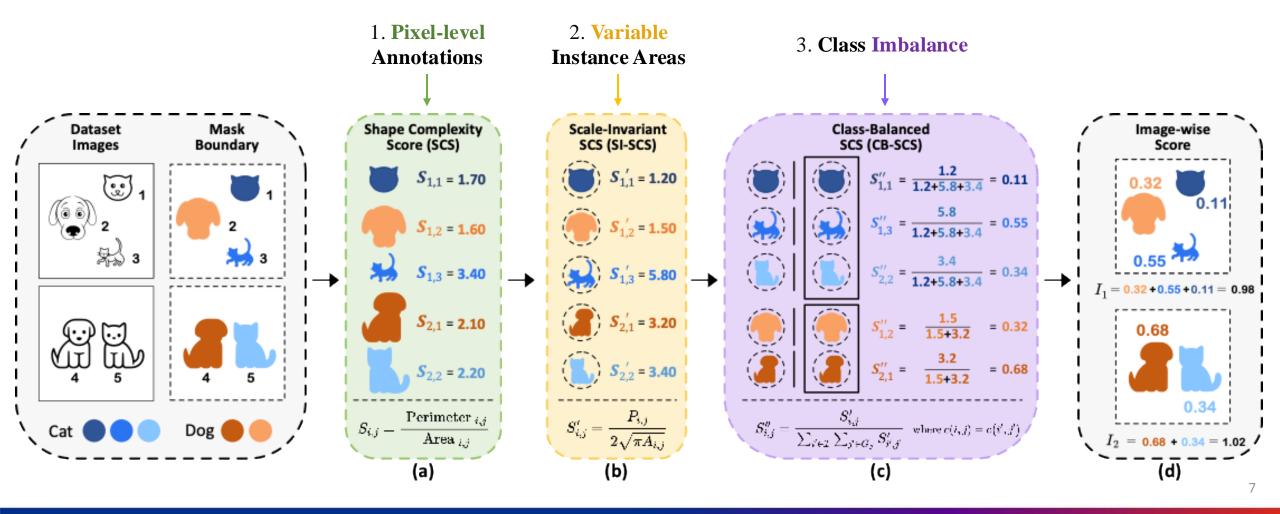
Motivation	Train	Experiment Results				
Motivation	Shape Complexity Score (SCS)	Scale-Invariant SCS	Class-Balanced SCS	COCO	Cityscapes	VOC

To the best of our knowledge, we are the **first** to introduce a **training-free** dataset pruning framework for instance segmentation.

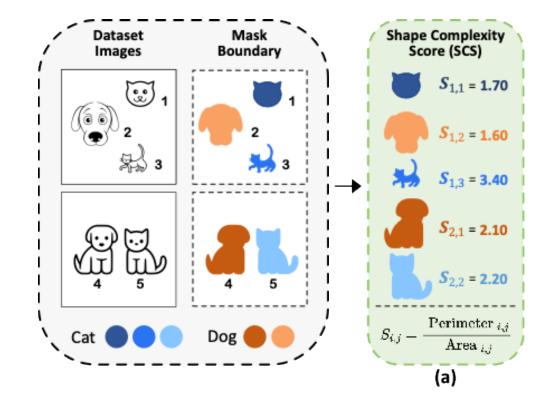


- 1. Better performance.
- 2. Better generalizability.
- 3. **Faster** speed (average of
- 1349× on COCO).

Training-Free Dataset Pruning (TFDP) Framework



Shape Complexity Score (SCS)



Mask Preparation

Contour Extraction

Perimeter Calculation

Area Calculation

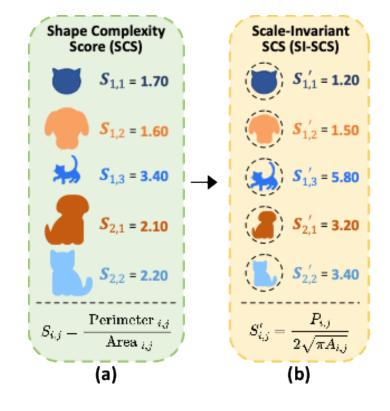
Shape Complexity
Score Computation

$$P_{i,j}$$

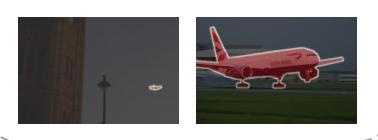
$$A_{i,j}$$

$$S_{i,j} = \frac{P_{i,j}}{A_{i,j}}$$

Scale- Invariant SCS (SI-SCS)



2. Variable Instance Areas

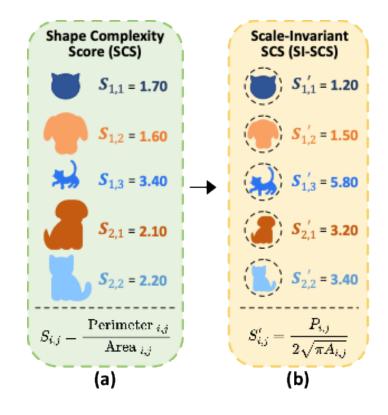


Scale bias Problem

For polygons of the same shape, scaling by factor **f** results in:

$$\frac{P'_{i,j}}{A'_{i,j}} = \frac{fP_{i,j}}{f^2A_{i,j}} = \frac{P_{i,j}}{fA_{i,j}}$$

Scale- Invariant SCS (SI-SCS)



Scale bias Solution

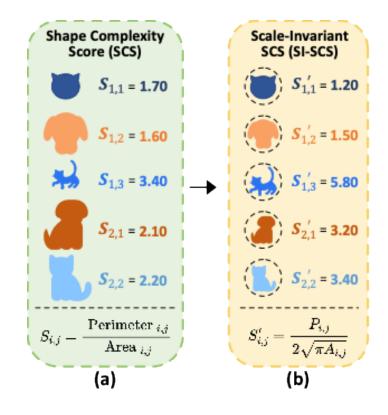
Normalize SCS using a circle, the **SI-SCS** is defined as:

$$S'_{i,j} = \frac{S_{i,j}}{S_{i,j}^{\circ}} = \frac{P_{i,j}}{2\sqrt{\pi A_{i,j}}}$$

$$S_{i,j}^{\circ} = \frac{P_{i,j}}{A_{i,j}} = \frac{2\pi r}{\pi r^2} = \frac{2}{r} = 2\sqrt{\frac{\pi}{A_{i,j}}}$$

SCS of a circle

Scale- Invariant SCS (SI-SCS)



Scale bias Solution

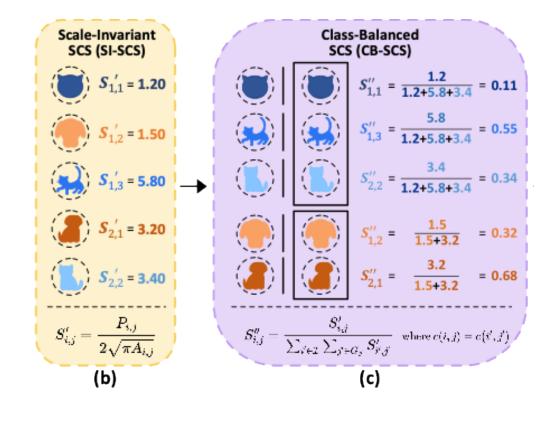
Normalize SCS using a circle, the **SI-SCS** is defined as:

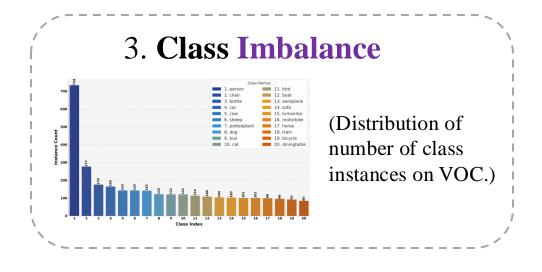
$$S'_{i,j} = \frac{S_{i,j}}{S_{i,j}^{\circ}} = \frac{P_{i,j}}{2\sqrt{\pi A_{i,j}}}$$

$$S'_{i,j}(f) = \frac{P_{i,j} \times f}{2\sqrt{\pi \cdot (A_{i,j} \times f^2)}} = \frac{P_{i,j} \times f}{2\sqrt{\pi A_{i,j}} \times f} = \frac{P_{i,j}}{2\sqrt{\pi A_{i,j}}} = S'_{i,j}$$

Scale invariant!

Class-Balanced SCS (CB-SCS)





Class bias Solution

Normalize individual instance SI-SCS by the total score of all instances in that class across different images.

$$S_{i,j}'' = \frac{S_{i,j}'}{\sum_{i' \in \mathcal{I}} \sum_{j' \in G_{i'}} S_{i',j'}'}$$
 where $c(i,j) = c(i',j')$

Results on **COCO** dataset. (Mask R-CNN)

				mAP					AP ₅₀					AP ₇₅		
\overline{p}	Time	0%	20%	30%	40%	50%	0%	20%	30%	40%	50%	0%	20%	30%	40%	50%
Random	-	34.2	33.6	32.1	31.1	30.8	55.2	54.5	52.8	51.1	51.0	36.5	35.6	34.1	33.2	32.7
Forgetting	20.29 h	_	33.1	32.3	31.4	30.4	-	54.2	53.4	52.2	51.2	-	35.2	34.3	33.4	32.1
Entropy	21.16 h	_	33.2	32.3	31.4	30.9	-	54.4	53.5	52.5	51.7	-	35.5	34.5	33.2	32.6
EL2N	12.37 h	_	33.4	32.1	31.2	30.5	-	54.5	52.9	51.7	51.2	-	35.6	34.2	33.2	32.0
AUM	20.29 h	_	33.5	32.4	31.5	31.0	_	54.6	53.3	52.4	51.7	-	35.5	34.7	33.4	32.8
CCS	20.29 h	-	33.4	32.4	31.7	31.5	-	54.1	53.3	52.6	52.3	-	35.6	34.4	33.6	33.2
Ours	0.014 h	-	34.4	33.6	33.1	32.5	-	55.5	54.8	54.2	53.4	-	36.7	35.4	35.1	34.3
Diff.	↑ 1349×	-	+0.8	+1.5	+2.0	+1.7	-	+1.0	+2.0	+3.1	+2.4	-	+1.1	+1.3	+1.9	+1.6

(a) The mask AP (%) results compare different dataset pruning baselines on COCO.

				mAP^{bb}					$A{P_{50}}^{bb}$					AP ₇₅ ^{bb}		
p	Time	0%	20%	30%	40%	50%	0%	20%	30%	40%	50%	0%	20%	30%	40%	50%
Random	-	37.7	37.0	35.3	34.0	33.8	58.3	57.6	56.1	53.8	54.3	41.1	40.1	38.0	37.3	36.3
Forgetting	20.29 h	-	36.8	35.6	34.5	34.0	-	57.7	56.2	55.2	54.4	_	40.4	38.7	37.5	36.8
Entropy	21.16 h	-	36.7	35.8	34.7	34.3	-	57.6	56.7	55.8	55.2	-	40.0	39.2	37.8	37.4
EL2N	12.37 h	-	36.9	35.7	34.7	34.0	-	57.7	56.4	55.1	54.5	_	40.1	38.9	37.6	36.5
AUM	20.29 h	-	37.0	35.8	34.8	34.3	-	57.9	56.6	55.6	55.1	_	40.6	39.0	38.1	37.1
CCS	20.29 h	-	36.8	35.7	35.2	34.7	-	57.6	56.5	56.1	55.7	-	40.3	39.1	38.2	37.5
Ours	0.014 h	-	37.8	37.2	36.7	35.9	-	58.8	58.1	57.6	56.9	_	41.1	40.2	39.9	38.8
Diff.	↑ 1349×	-	+0.8	+1.9	+2.7	+2.1	-	+1.2	+2.0	+3.8	+2.6	-	+1.0	+2.2	+2.6	+2.5

⁽b) The bounding-box (bb) AP (%) results compare different dataset pruning baselines on COCO.

Generalization Experiments. (SOLO-v2 and QueryInst)

Model	SOL	O-v2	Quer	yInst
\overline{p}	40%	50%	40%	50%
Random	51.4	51.1	53.3	52.8
Entropy	52.8	51.6	55.6	53.9
EL2N	52.1	50.3	55.0	52.7
AUM	52.5	51.0	55.6	54.0
CCS	53.0	52.1	55.0	53.5
Ours Diff.	53.1 +1.7	52.3 +1.2	55.9 +2.6	55.0 +2.2

Table 3: The AP₅₀ (%) results in the generalization ability to different architectures on COCO dataset.

Scalability Experiments. (Mask R-CNN)

			m	AP			Al	P ₅₀			AP	50	
Validation Network		20%	30%	40%	50%	20%	30%	40%	50%	20%	30%	40%	50%
ResNet-101	Random Ours Diff.	35.5 35.8 +0.3	34.8 35.3 +0.5	34.0 34.9 +0.9	33.1 34.3 +1.2	56.6 57.1 +0.5	55.7 56.6 + 0.9	54.7 56.4 +1.7	53.8 55.6 +1.8	37.9 38.2 +0.3	36.9 37.6 +0.7	36.3 37.3 +1.0	35.0 36.6 +1.6
ResNeXt-101	Random Ours Diff.	36.7 37.2 +0.5	36.2 36.6 +0.4	35.4 36.1 +0.7	34.3 35.5 +1.2	58.4 59.2 +0.8	58.0 58.8 +0.8	56.8 58.2 +1.4	55.4 57.6 +2.2	39.2 39.9 +0.7	38.4 39.0 +0.6	37.8 38.4 +0.6	36.3 37.9 +1.6

(a) The mask AP (%) results for different IoU thresholds (0.5 to 0.95, 50, 75) of different backbones on COCO.

			m	AP			AP	bb 50			AP_{50}	bb)	
Validation Network		20%	30%	40%	50%	20%	30%	40%	50%	20%	30%	40%	50%
ResNet-101	Random Ours Diff.	39.2 39.8 +0.6	38.4 39.4 +1.0	37.6 38.9 +1.3	36.4 38.1 +1.7	59.7 60.4 + 0.7	58.8 60.2 +1.4	57.9 59.7 +1.8	56.8 58.9 +2.1	42.8 43.5 +0.7	41.9 42.6 +0.7	40.8 42.4 +1.6	39.6 41.2 +1.6
ResNeXt-101	Random Ours Diff.	40.8 41.4 +0.6	40.3 41.0 +0.7	39.1 40.3 +1.2	38.0 39.6 +1.6	61.6 62.6 +1.0	61.4 62.1 +0.7	59.9 61.4 +1.5	58.7 60.9 +2.2	44.7 45.4 +0.7	44.2 45.0 +0.8	42.8 44.0 +1.2	41.5 43.4 +1.9

⁽b) The bbox AP (%) results for different IoU thresholds (0.5 to 0.95, 50, 75) of different backbones on COCO.

Table 11: The AP_{50} (%) results in the scalability ability to the different backbones of Mask R-CNN on the COCO dataset.

Results on **Cityscapes** and **VOC** datasets. (Mask R-CNN)

Dataset			VOC	!				C	Citysca	pes		
\overline{p}	Time	0%	20%	30%	40%	50%	Time	0%	20%	30%	40%	50%
Random	-	40.9	39.4	32.0	29.0	23.7	-	27.6	26.1	21.8	19.0	16.9
Forgetting	21.21 min	-	33.6	30.8	28.1	21.6	5.54 h	-	25.8	23.2	19.3	17.1
Entropy	21.75 min	-	38.4	34.2	31.7	29.3	5.61 h	-	26.4	22.2	20.1	17.2
El2N	12.70 min	_	39.1	35.3	32.1	29.8	3.01 h	-	26.2	22.6	20.3	17.4
AUM	21.21 min	-	35.2	31.0	26.3	19.2	5.54 h	-	25.3	24.5	21.2	18.4
CCS	21.21 min	-	38.8	35.4	34.3	30.8	5.54 h	-	25.4	24.1	19.9	17.0
Ours	0.12 min	-	40.3	38.6	36.2	33.4	0.0051 h	-	27.5	25.4	23.4	19.4
Diff.	↑ 164 ×	-	+0.9	+6.6	+7.2	+9.7	↑ 100 ×	-	+1.4	+3.6	+4.4	+2.5

Table 2: The mask AP (%) results compare different dataset pruning baselines on VOC and Cityscapes. The pruning rate p represents the percentage of data removed from the full training dataset during pruning. The performance on the full dataset is indicated by p = 0%.

Results on **Cityscapes** datasets (Mask R-CNN **Pre-trained** on COCO).

			mAP					AP ₅₀		
	0%	20%	30%	40%	50%	0%	20%	30%	40%	50%
Random	36.4	35.4	35.0	35.6	33.8	61.8	60.5	60.8	60.6	58.9
Entropy	-	34.7	35.6	34.5	34.3	-	61.3	62.6	61.4	60.3
EL2N	-	34.2	34.1	35.2	32.1	-	59.2	59.7	61.8	57.3
AUM	-	36.3	34.9	34.4	33.9	-	62.6	60.9	59.4	59.4
CCS	-	36.1	36.1	35.0	34.0	-	61.7	61.7	60.7	59.7
Ours	-	36.9	36.6	36.6	36.6	-	62.8	63.9	63.4	62.8
Diff.	-	+1.5	+1.6	+1.0	+2.8	-	+2.3	+3.1	+2.8	+3.9

Table 5: The mask AP (%) results on Cityscapes (**pre-trained on COCO**).

https://github.com/hey/dataset-pruning-forinstance-segmentation

THANK YOU

www.a-star.edu.sg