Broadening Target Distributions for Accelerated Diffusion Models via a Novel Analysis Approach

Yuchen Liang[†], Peizhong Ju[‡], Yingbin Liang[†], Ness Shroff[†]

[†]The Ohio State University [‡]University of Kentucky

Presented at ICLR 2025

Overview

- Introduction
- 2 Accelerated Sampler and Convergence Bound
- 3 Example Q_0 's with Explicit Parameter Dependency
- 4 Conclusion

Background on Diffusion Models

- Problem: Generate samples from a complex distribution (e.g., images)
- ▶ Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020)

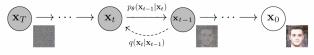


Figure 2: The directed graphical model considered in this work.

- 1. Forward process $Q: x_t = \sqrt{\alpha_t}x_{t-1} + \sqrt{1-\alpha_t}w_t$, for **training**
- 2. Reverse process \widehat{P} : $x_{t-1} = \widehat{\mu}_t(x_t) + \sqrt{\frac{1-\alpha_t}{\alpha_t}}z_t$, for **sampling**
- ightharpoonup Train for posterior-mean $\widehat{\mu}_t(x_t)$
- Good sample quality, but slow...

Literature Review

Regular DDPMs:

- ▶ Best theoretical result: Q_0 finite var, $\mathrm{KL}(Q_0||\widehat{P}_0) \lesssim dT^{-1} + \varepsilon_{\mathsf{score}}^2$ (Chen *et al.*, 2023, Benton *et al.*, 2024)
- Existing Analysis: SDE-based analysis (Fokker-Planck equation, Girsanov change-of-measure) (Chen et al., 2023a, Benton et al., 2024a), typical-sets (Li et al., 2024c)

Literature Review

Regular DDPMs:

- ▶ Best theoretical result: Q_0 finite var, $\mathrm{KL}(Q_0||\widehat{P}_0) \lesssim dT^{-1} + \varepsilon_{\mathrm{score}}^2$ (Chen *et al.*, 2023, Benton *et al.*, 2024)
- Existing Analysis: SDE-based analysis (Fokker-Planck equation, Girsanov change-of-measure) (Chen et al., 2023a, Benton et al., 2024a), typical-sets (Li et al., 2024c)

Accelerated DDPMs:

- Existing Samplers: additional estimates (Li et al., 2024c), intermediate points (Li et al., 2024a), ODE (Chen et al., 2023c)...
- Challenge: Strong assumptions on Q
 - 1. **All** Q_t 's have Lipschitz scores (hard to check)
 - 2. Q₀ bounded support (not finite var)

Main Questions

- 1. Can we obtain an accelerated convergence rate for a much **broader** set of target distributions?
 - Can we relax the Lipschitz smoothness (i.e., not on the entire path)?
 - Can we only require finite variance?
- 2. For existing cases, can we achieve a lower dimensional dependency?

New Accelerated Sampler

- Intuition: Approximate posterior variance
 - In comparison, the regular sampler only approximates posterior mean and assumes $\Sigma_t(x_t) \equiv \frac{1-\alpha_t}{\alpha_t} I_d$
- ▶ Define true post var $\Sigma_t(x_t) := \frac{1-\alpha_t}{\alpha_t} \left(I_d + (1-\alpha_t)\nabla^2 \log q_t(x_t)\right)$
 - ▶ Define $H_t(x_t)$ an estimate for $\nabla^2 \log q_t(x_t)$
 - We also provide examples how to estimate for H_t with theoretical guarantees (See Eqns (8) and (9) in paper)
- ▶ Define the **accelerated** reverse process: $x_{t-1} = \hat{\mu}_t(x_t) + \hat{\Sigma}_t^{\frac{1}{2}}(x_t)z_t$

Accelerated Convergence

- ▶ Noise schedule: $1 \alpha_t \lesssim \frac{\log T}{T}$ while $\bar{\alpha}_T := \prod_{t=1}^T \alpha_t = o\left(T^{-2}\right)$
- List of Assumptions:
 - 1. Finite-var Q_0
 - 2. Absolute continuity (when q_0 exists)
 - 3. Score and Hessian est error: $\varepsilon_{\text{score}}^2 = \tilde{O}(T^{-2})$ and $\varepsilon_{\text{Hessian}}^2 = \tilde{O}(T^{-1})$
 - 4. Regular partial derivatives

Accelerated Convergence

- ▶ Noise schedule: $1 \alpha_t \lesssim \frac{\log T}{T}$ while $\bar{\alpha}_T := \prod_{t=1}^T \alpha_t = o\left(T^{-2}\right)$
- List of Assumptions:
 - 1. Finite-var Q_0
 - 2. Absolute continuity (when q_0 exists)
 - 3. Score and Hessian est error: $\varepsilon_{\text{score}}^2 = \tilde{O}(T^{-2})$ and $\varepsilon_{\text{Hessian}}^2 = \tilde{O}(T^{-1})$
 - 4. Regular partial derivatives
- ► Theorem 1: Under these assumptions,

$$\begin{split} & \text{KL}(Q_0||\widehat{P}'_0) \\ & \lesssim (\log T)\varepsilon_{\text{score}}^2 + \frac{\log^2 T}{T}\varepsilon_{\text{Hessian}}^2 + \sum_{t=1}^T (1 - \alpha_t)^3 \times \\ & \mathbb{E}_{X_t \sim Q_t} \sum_{i,j,k=1}^d \partial_{ijk}^3 \log q_{t-1}(\mu_t(X_t)) \partial_{ijk}^3 \log q_t(X_t) \\ & = \tilde{O}(T^{-2}) \end{split}$$

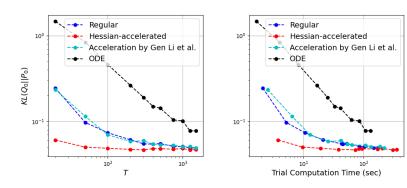
► Analysis not based on SDE techniques, but **tilting-factors**

Example Q_0 's with Explicit Parameter Dependency

Target distribution Q_0	Method	Num of steps	Results
$\nabla \log q_t, s_t$ L-Lips. $\forall t$	ODE-based	$\mathcal{O}\left(rac{\sqrt{d}L^2}{arepsilon} ight)$	(Chen et al., 2023c, Thm 3)
$\nabla \log q_t$ L-Lips. $\forall t$	DDPM accl.	$\mathcal{O}\left(rac{\sqrt{d}L^2}{arepsilon} ight)$	(Huang et al., 2024b, Thm 4.4) [†]
$\left \partial_{\pmb{a}}^k s_t(x)\right \le L \ \forall x, t, \pmb{a}$ and $\forall k \le p+1, \ Q_0$ Bounded Support	ODE	$\mathcal{O}\left(rac{d^{rac{p+1}{p}}}{rac{1}{arepsilon^{rac{p}{p}}}} ight)^*$	(Huang et al., 2024a, Thm 3.10) [†]
$ abla^2 \log q_0 \ M$ -Lips.	DDPM accl.	$\mathcal{O}\left(rac{d^{1.5}\log^{1.5}M}{arepsilon} ight)$	(This paper, Thm 4)
Q ₀ Gaussian Mixture	DDPM accl.	$\mathcal{O}\left(\frac{d^{1.5}N^{1.5}}{\varepsilon}\right)$	(This paper, Thm 2)
	DDPM accl.	$\mathcal{O}\left(rac{d^3}{arepsilon} ight)^*$	(Li et al., 2024c, Thm 4) (Li et al., 2024a, Thm 2) [†]
Q ₀ Bounded Support	ODE	$\mathcal{O}\left(\frac{d^3}{\sqrt{arepsilon}} ight)^*$	(Li et al., 2024c, Thm 2) (Li et al., 2024a, Thm 1) [†]
	ODE	$\mathcal{O}\left(\frac{d^2}{arepsilon} ight)^*$	(Li et al., 2024c, Thm 1)
Q ₀ Finite Variance	DDPM accl.	$\mathcal{O}\left(\frac{d^{1.5}}{arepsilon} ight)^*$	(This paper, Thm 3)

- \triangleright Broader set of Q_0
- ▶ Better dimensional dependencies (for finite var)

Numerical Performance



 \triangleright Q_0 : Gaussian mixture

Conclusion

- Accelerated convergence on broader set of target distributions
 - ightharpoonup ...for both smooth Q_0 and general Q_0 with early-stopping
- New Hessian-based accelerated sampler
- Novel tilting-factor analysis technique