

Ciyuan Peng¹, Yuelong Huang², Qichao Dong³, Shuo Yu², Feng Xia⁴⊠, Chengqi Zhang⁵, Yaochu Jin⁶⊠ ¹Federation University Australia, ²Dalian University of Technology, ³Zhejiang Gongshang University, ⁴RMIT University, ⁵Hong Kong Polytechnic University, ⁶Westlake University

Introduction

Motivation

- Brain graphs exhibit small-world architecture accompanied by the presence of (1) hubs and (2) functional modules.
- Current methods lack tailored design for small-world brain graphs, leading to lacking sufficient biological plausibility for the learned brain graph representations.

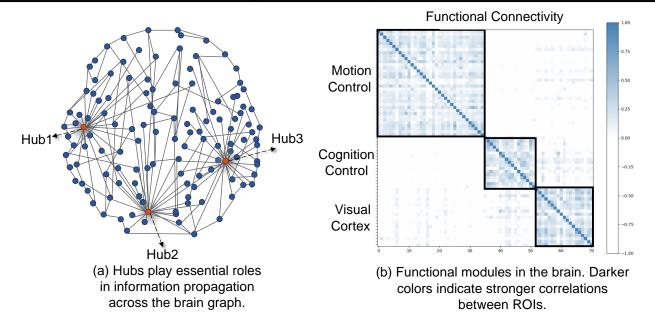


Fig: Small-world architecture of brain graphs

Proposal and Contribution

BioBGT encodes the small-world architecture of brain graphs to enhance the biological plausibility of the learned representations:

- ❖ Node importance encoding: Capturing node importance in the information propagation across brain graphs.
- ❖ Functional module encoding: Preserving the functional segregation and integration characteristics of brain graphs in the learned representations.

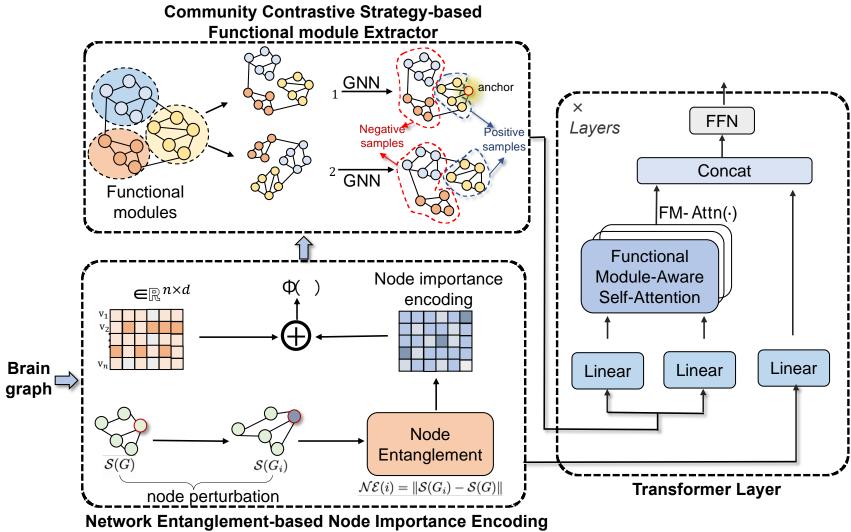


Fig: Overall framework of BioBGT.

Network Entanglement (NE)-based Node Importance Encoding

- lacksquare Node importance degree calculation (NE value): $\mathcal{NE}(i) = \|\mathcal{S}(G_i) \mathcal{S}(G)\|_{i=1}^{n}$
 - \circ S(G) and $S(G_i)$ are the density matrix-based spectral entropy of G and G_i , G_i is the i-control graph obtained after the perturbation of node i.

Method

□ Node representation with node importance encoded:

$$\mathbf{x}'_{i} = \Phi(\mathbf{x}_{i}) = \mathbf{x}_{i} + \mathbf{x}_{\mathcal{N}\mathcal{E}(i)} \tag{1}$$

- \circ \mathbf{x}_i is the original representation of node i.
- o $\mathbf{x}_{\mathcal{N}\mathcal{E}(i)}$ is the learnable embedding vector specified by $\mathcal{N}\mathcal{E}(i)$.
- \circ $\Phi(\cdot)$ denotes our node importance encoding.

Functional Module Encoding

☐ Community contrastive strategy-based functional module extractor: We design a functional module extractor $\psi(\cdot)$ to obtain the updated functional module-aware representation:

$$\mathbf{h}_i := \psi(i, \mathcal{M}_i) \tag{2}$$

- o \mathbf{h}_i is the functional module-aware representation of node i.
- \circ \mathcal{M}_i is the functional module node i belongs to. Functional modules are detected by using Louvain algorithm.
- We adopt the InfoNCE as the contrastive loss function to update representations.
- ☐ Functional Module-aware Self-attention: We define trainable exponential kernels on functional module-aware node representations:

$$FM-Attn(i) = \sum_{j \in V} \frac{exp\left(\langle \mathbf{W}_{Q}\mathbf{h}_{i}, \mathbf{W}_{K}\mathbf{h}_{j} \rangle / \sqrt{d_{K}}\right)}{\sum_{u \in V} exp\left(\langle \mathbf{W}_{Q}\mathbf{h}_{i}, \mathbf{W}_{K}\mathbf{h}_{u} \rangle / \sqrt{d_{K}}\right)} f(\mathbf{h}_{j}). \tag{3}$$

Therefore, for node i, the node representation fed to FFN is: $\tilde{\mathbf{x}}_i = \Phi(\mathbf{x}_i) + \text{FM-}Attn(i)$.

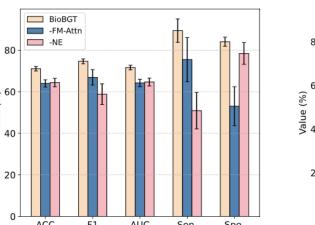
Results and Analysis

☐ Model Comparison

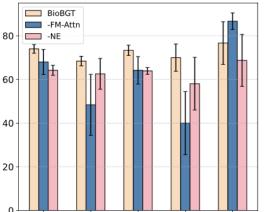
We compare BioBGT with other state-ofthe-art baselines on graph tasks across three datasets.

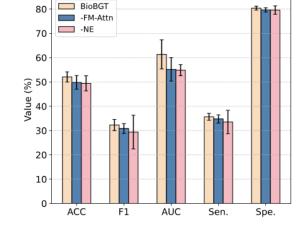
Dataset	Group	Number	No. ROI
ADNI	NC	190	90
	MCI	170	90
	AD	47	90
ADHD-200	NC	230	190
	ADHD	229	190
ABIDE	NC	493	200
	Autism	516	200

tha art	the-art baselines on graph classification								1			
uie-ait	Dasellille	29 OI	ı yrap	ii ciassiiicalioii		SAN	51.09 ± 2.00	51.22 ± 2.21	$ 49.80\pm1.97 $	50.20 ± 2.34	34.44±4.61	49.23 ± 2.67
tacks	tasks across three datasets.					Graph Trans.	50.76 ± 2.07	51.49 ± 1.15	50.20 ± 0.50	48.20 ± 0.16	40.28±4.17	52.31 ± 2.04
lasks a					Graph	Graphormer	61.60 ± 0.90	58.64 ± 1.50	58.40 ± 0.68	57.61 ± 0.72	35.64 ± 2.17	48.19 ± 12.69
						SAT-PE	60.00 ± 2.73	59.68 ± 2.60	60.60 ± 3.11	59.14 ± 4.56	39.96±1.51	48.17 ± 6.57
	Dataset	Group	Number	No. ROI	Transformer	SAT+PE	64.44 ± 3.45	64.21 ± 3.40	58.76 ± 4.88	69.29 ± 5.48	41.51 ± 4.01	42.13 ± 5.74
			100		Models	BRAINNETTF					1	55.72 ± 7.13
		NC	190	90		Polynormer			1			
	ADNI	MCI	170	90 90		Gradformer					1	
		AD	47	90		GTSP	61.70 ± 3.81	61.41 ± 2.90	$ 61.37\pm3.59 $	60.43 ± 3.47	$ 47.27\pm3.81 $	53.59±3.26
	4 D. I.D. 200	NC	230	190		GAT	55.38 ± 3.18	54.97 ± 3.28	53.51±2.54	53.41 ± 2.48	34.99 ± 7.43	51.73 ± 6.66
	ADHD-200	ADHD	229	190	Graph Naural	BrainGNN	55.76 ± 1.20	58.00 ± 0.49	51.34±1.17	54.27 ± 0.66	43.33±4.08	50.21 ± 2.97
					Graph Neural Networks	BrainGB	68.20 ± 7.81	74.64 ± 10.10	65.12±3.90	70.32 ± 3.66	44.34±3.90	62.24 ± 4.68
	ABIDE	NC	493	200	Networks	MCST-GCN	59.06 ± 2.69	59.05 ± 3.89	54.22 ± 2.40	55.18 ± 2.35	48.44 ± 3.12	62.25 ± 2.93
	ABIDE Autism 516 20		200		GroupBNA	69.87 ± 3.02	71.16 ± 4.53	$ 63.14\pm2.65 $	71.30 ± 3.81	$ 46.72\pm1.33 $	50.85 ± 8.10	
-		,			Our Model	BioBGT	71.06±0.08	71.64±1.14	74.00±2.01	73.33±2.37	52.08±2.08	62.33±5.98
Table: Sta	atistic inf	orma	tion of	f three datasets.	Table: Model comparison Results							


Table: Model companson Results.

 53.56 ± 2.73 54.66 ± 3.40 $|49.01\pm1.70$ 49.05 ± 1.94 $|32.29\pm2.63$ 49.88 ± 3.10


Random Forest 58.96 ± 2.77 59.49 ± 2.38 51.14 ± 3.08 51.41 ± 3.23 49.03 ± 1.27 58.18 ± 2.31


Results and Analysis (cont.)

☐ Ablation Studies

(a) ADHD-200

(c) ADNI

Fig: Performance of BioBGT and its altered models.

Comparative analysis of node importance measurement

(b) ABIDE

i			ABIDE		ADNI			ADHD-200			
		F1	ACC	AUC	F1	ACC	AUC	F1	ACC	AUC	
H	+PE	54.00±2.97	60.60±2.25	60.91±2.05	30.09±3.36	49.43±2.42	52.14±2.41	69.21±7.14	67.56±3.24	67.39 ± 2.80	
Ĺ	+DC	59.73 ± 4.23	61.20 ± 1.88	61.28 ± 1.80	27.27 ± 1.57	50.57 ± 1.64	55.45 ± 3.59	74.22 ± 1.35	69.78 ± 2.33	70.18 ± 2.28	
Į.	+PE+DC	56.64 ± 2.40	63.00 ± 1.63	63.32 ± 1.55	27.77 ± 1.08	50.94 ± 1.25	55.08 ± 3.94	73.60 ± 4.28	70.67 ± 4.00	70.79 ± 4.10	
H	+BC	52.77 ± 1.30	70.00 ± 6.12	65.62 ± 7.29	26.70 ± 4.26	48.11 ± 3.20	51.38 ± 7.88	72.20 ± 3.61	71.12 ± 0.88	$70.09\pm1,05$	
i.	+CC	62.43 ± 1.53	73.75 ± 6.50	70.84 ± 7.65	25.84 ± 5.50	48.11 ± 3.61	50.68 ± 11.24	73.78 ± 5.11	72.69 ± 0.88	69.38 ± 0.94	
I I	+EC	53.13±1.62	71.25±8.20	66.67±9.88	27.75±9.12	47.64 ± 3.08	54.39 ± 8.41	73.09±4.98	71.11±1.11	68.99 ± 0.99	
Ĺ	BioBGT	68.41±2.19	74.00±2.01	73.33±2.37	32.29±2.31	52.08±2.08	61.33±5.98	74.63±1.18	71.06±0.08	71.64 ± 1.14	

Table: Results of BioBGT and its variants

☐ Biological Plausibility in Node Importance Encoding

- We compare the NE values of each node with their node efficiency (NEff) values to evaluate the validity of NE.
- The changing trend of the NE curve aligns closely with that of the NEff curve.

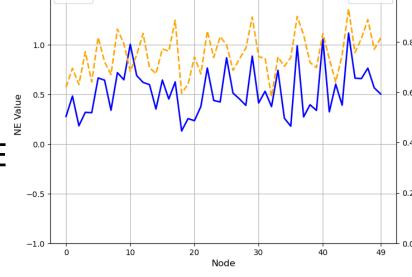


Fig: The NE and NEff values of 50 randomly selected nodes from a sample in the ABIDE dataset.

☐ Biological Plausibility in Functional Module-Aware **Self-Attention**

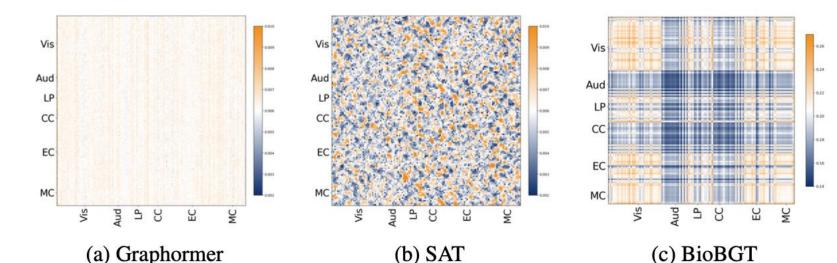


Fig: The average attention score of BioBGT (on ADHD-200 align better with the division of functional modules.