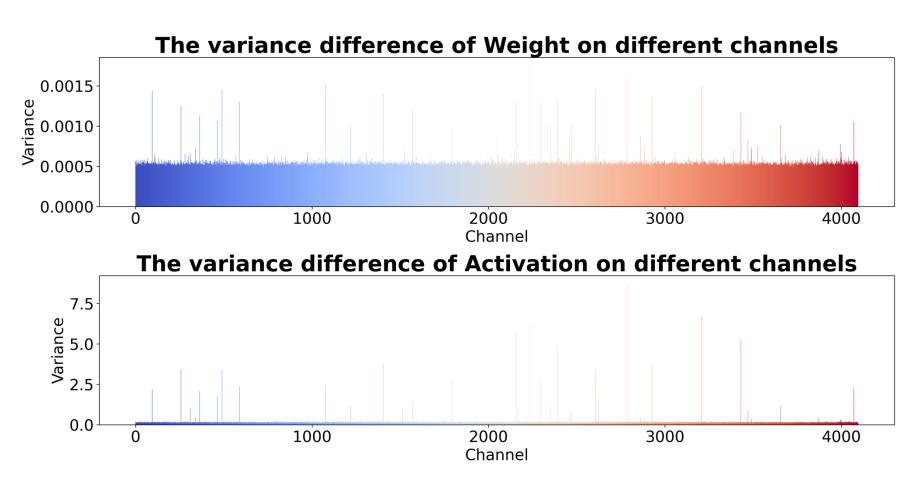
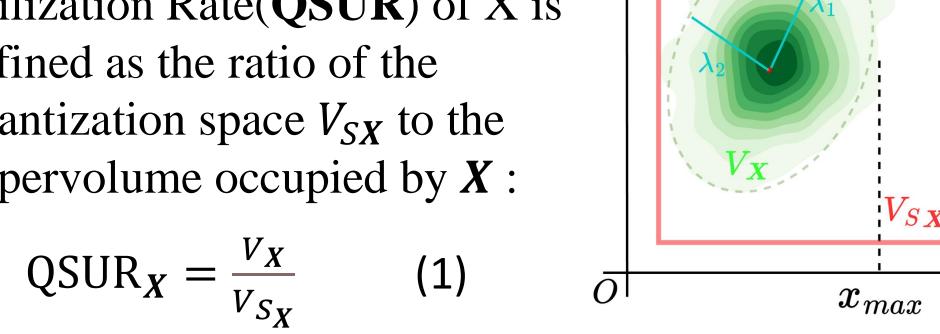


OSTQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformation for Better Distribution Fitting



Xing Hu¹*, Yuan Cheng¹²*, Dawei Yang¹*⊠, Zukang Xu¹, Sifan Zhou³, Jiangyong Yu¹, Chen Xu¹, Zhe Jiang³, Zhihang Yuan¹⊠ 1. Houmo AI 2. Nanjing University 3. Sourtheast University

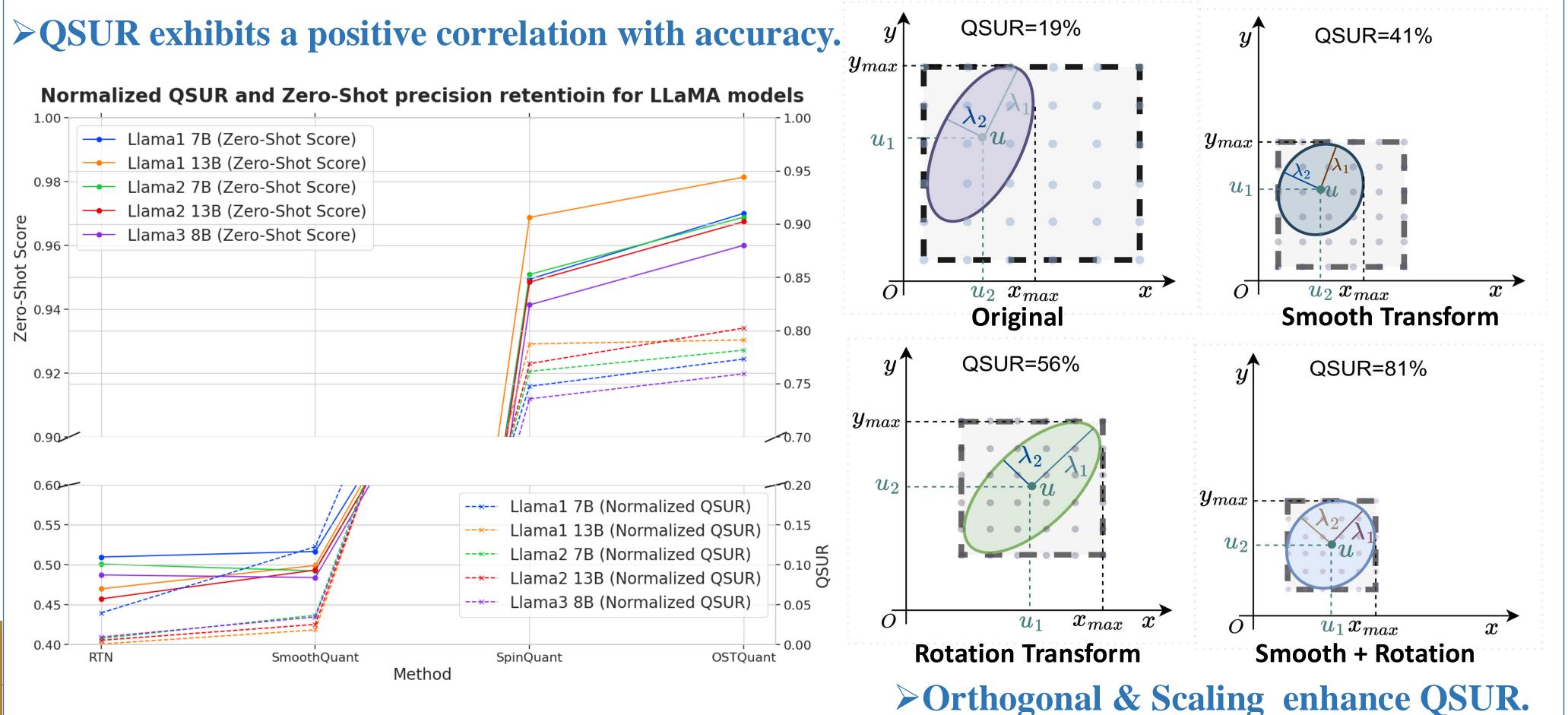
Challenges


Uneven & heavy-tailed distributions in LLMs expands the quantization range, thereby making the quantization for LLMs challenging.

Previous approaches remain heuristic and do not optimize the distribution across the entire quantization space.

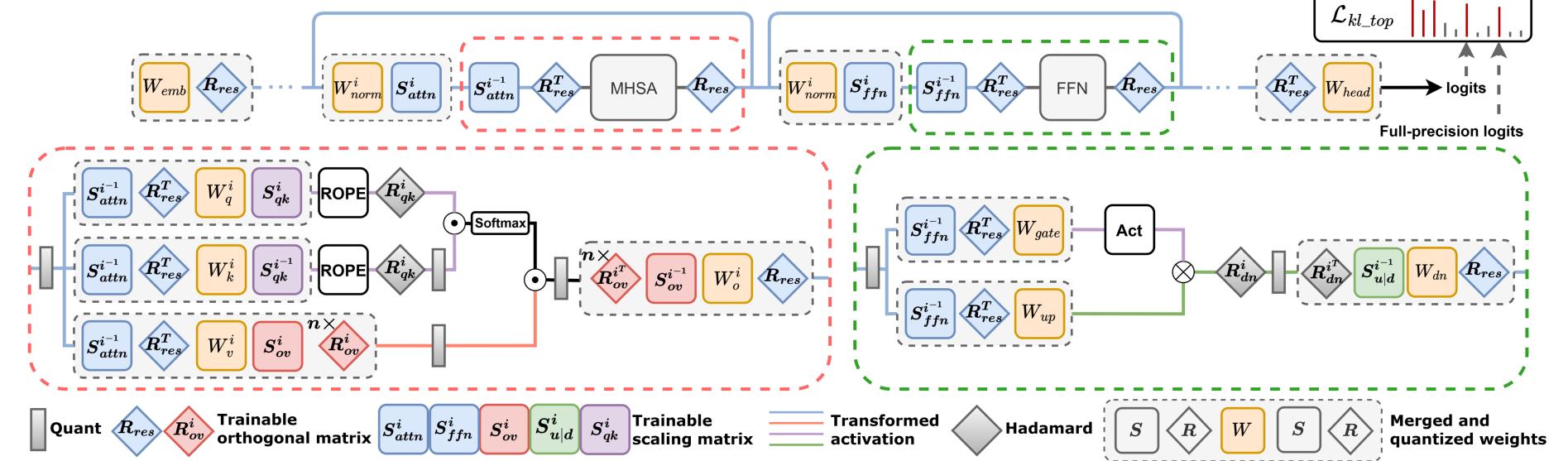
OSUR

The Quantization Space Utilization Rate(QSUR) of X is defined as the ratio of the quantization space V_{SX} to the hypervolume occupied by X:


For $X \in \mathbb{N}(\mu, \Sigma)$, We get:

$$QSUR_{X} = \frac{\pi^{d/2}}{\Gamma(d/2+1)} \cdot \left(\chi_{d}^{2}(\alpha)\right)^{d/2} \cdot \sqrt{\det(\Lambda)} - \frac{\pi^{d/2}}{\Gamma(d/2+1)} \cdot \sqrt{\prod_{i=1}^{d} \Lambda_{i}} - \frac{\pi^{d/2}}{2^{d} \left(\max\left(\sqrt{\lambda_{1}} \cdot \boldsymbol{q}_{1}\right)\right)^{d}} - \frac{2^{d} \left(\max\left(\sqrt{\lambda_{1}} \cdot \boldsymbol{q}_{1}\right)\right)^{d}}{2^{d} \left(\min\left(\sqrt{\lambda_{1}} \cdot \boldsymbol{q}_{1}\right)\right)^{d}} - \frac{\pi^{d/2}}{2^{d} \left(\min\left(\sqrt{\lambda_{1}} \cdot \boldsymbol{q}_{1}\right)$$

From equation above, We find that:

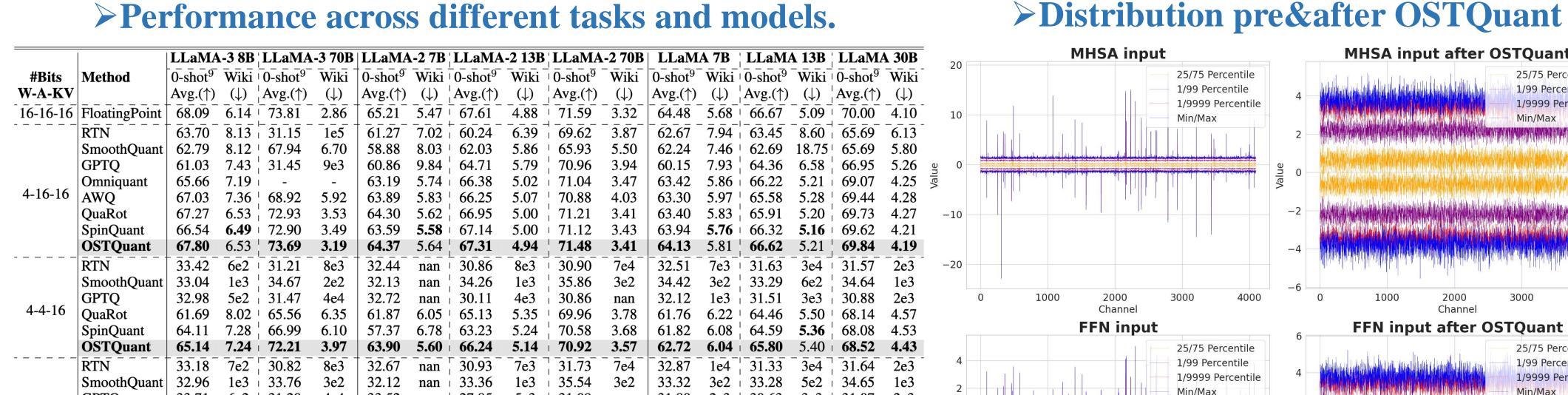

- 1) QSUR is proportional to the product of the ratios of each eigenvalue λ_i to the largest eigenvalue λ_1
- 2) The maximum component of the eigenvector q_1 is Initialization: inversely proportional to QSUR.

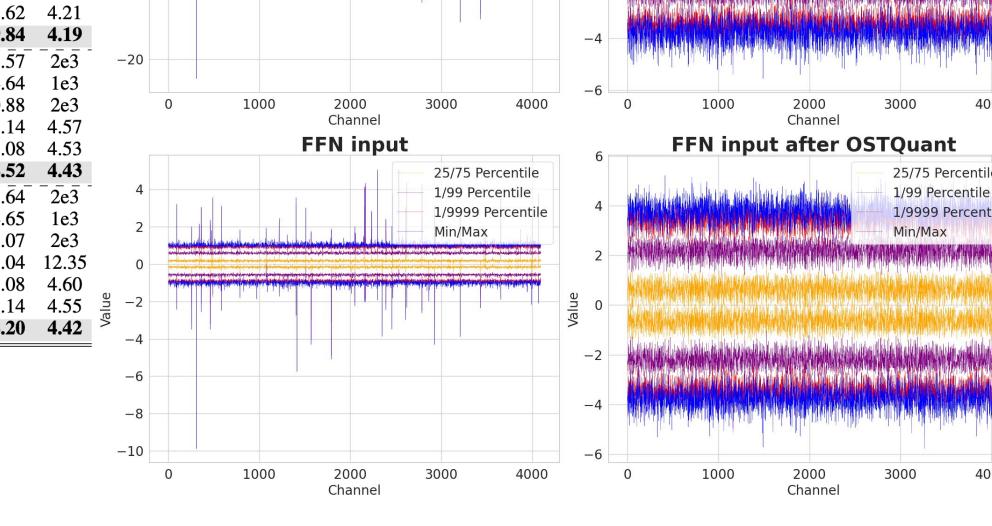
Motivation

Method

>Use learnable OS equivalent transformation pairs to optimize the distributions.

Equivalent Transformation Pair $T = AQ^{T}$, forward like: \triangleright Use KL-Top loss function to focus $y = Q(x \boldsymbol{W}_1 \boldsymbol{O} \boldsymbol{\Lambda}) Q(\boldsymbol{\Lambda}^{-1} \boldsymbol{O}^T \boldsymbol{W}_2)$ optimization on model's main predictions.


Optimization objective:


$$\underset{A_i, \boldsymbol{o}_i}{\operatorname{arg}} \min_{\boldsymbol{A}_i, \boldsymbol{o}_i} \mathcal{L}(\hat{y}, y; \boldsymbol{A}_i, \boldsymbol{o}_i, \theta)$$

$$O = E_W H$$
 $A = I$

idxs = topk(z)

Experiments

>Speedup and Memory saving.

Model	Decoder Speed (tokens/sec)			Memory Use (GB)		Memory Saving	Model Size	Prefill Speedup (Seqlen)					Memory Saving Factor (Seqlen)						
	FP	Quantized	Speed up	FP	Quantized		viouei Size	256	512	1024	2048	4096	8192	256	512	1024	2048	4096	8192
LLaMA-2-7B	47.32	89.4	1.89x	13.94	4.32	3.23x													
LLaMA-3-8B	38.33	77.71	2.03x	15.83	5.88	2.69x	7B	2.24x	2.27x	2.23x	2.14x	2.11x	2.02x	3.48x	3.34x	3.12x	2.86x	2.57x	2.34x
LLaMA-2-13B	23.7	55.35	2.34x	23.7	8.5	2.79x	3B	2.42x	2.52x	2.52x	2.43x	2.36x	2.23x	3.48x	3.36x	3.12x	2.77x	2.38x	2.00x
LLaMA-30B	OOM	30.49	_	OOM	18.19	_	13B	2.62x	2.68x	2.63x	2.52x	2.83x	2.32x	3.64x	3.51x	3.30x	3.02x	2.70x	2.43x
LLaMA-3-70B	OOM	14.68	-	OOM	38.41	-	30B	3.18x	3.01x	2.98x	3.40x	2.84x	2.68x	3.70x	3.59x	3.42x	3.15x	2.83x	2.53x

>Ablation Study.

Ablation on loss function

Model	Loss Type	Wiki PPL	Arc-Easy Score	Arc-Challenge Score
LLaMA-2-7B	Origin	5.38	69.87	42.41
LLaWA-2-/D	KL-Top	5.94	72.69	44.62
LLaMA-2 13B	Origin	5.12	75.09	46.08
LLaMA-2 13D	KL-Top	5.25	75.29	47.10
LLaMA-3 8B	Origin	6.80	76.68	49.26
LLaWA-3 ob	KL-Top	7.29	76.73	49.32

Setting	Metric	k=5	k=50	k=100	k=500	k=1000	k=5000	k=10000
W3 Only	Zero-Shot ⁹ Score Wiki PPL	61.87 6.06	61.88 6.116	61.75 6.13	62.18 6.07	62.30 6.06	61.25 6.06	61.21 6.12
XX7.4.A. AXZX7.4	Zero-Shot ⁹ Score	62.4	62.13	62.38	62.34	63.18	62.44	62.11
W4A4KV4	Wiki PPL	5.99	5.96	5.95	5.96	5.96	5.93	5.94

Ablation on methods of initialization									
Model	Quant Setting	Method	Zero-Shot ⁹	Wiki PPL					
	Full-Precision	-	65.21	5.47					
	W4A16KV16	Hadamard	63.32	5.62					
LLaMA-2-7B	W4A16KV16	WOMI	63.45	5.59					
LLawii L / D	W4A4KV4	Hadamard	61.47	6.11					
	W4A4KV4	WOMI	61.52	6.09					
		-							

Ablation on different transformation matrices											
Metric	Baseline	$+oldsymbol{R}_{res}$	$+S_{res}$	$+oldsymbol{R}_{dn}$	$+oldsymbol{S}_{u d}$	$+oldsymbol{R}_{qk}$	$+S_{qk}$	$+oldsymbol{R}_{ov}$	$+S_{ov}$		
Wiki PPL	nan	9.70	9.46	6.16	6.00	5.92	5.92	5.94	5.91		
7 and alact9	22 51	5122	5271	61 75	61.70	60.25	60.56	62 11	(2 10		

- >Introduce QSUR as an effective metric and support it to guide optimization and method design.
- >OSTQuant: a fast and effective PTQ method helps quantization by optimizing distributions.
- >SOTA: shows strong performance, maintaining high accuracy even at extremely low bitwidths.