

Improving Unsupervised Constituency Parsing via Maximizing Semantic Information

Junjie Chen ¹ Xiangheng He ² Yusuke Miyao ¹ Danushka Bollegala ³

¹The University of Tokyo

²Imperial College London

³University of Liverpool

Research Question

Can we predict the constituent structure by searching for a structure maximizing semantic information?

Motivation

- Linguistically-defined constituent phrases often correspond to semantic concepts.
- Constituent structures aid natural language understanding [2, 3].
- Constituent phrases are resilient against semantic-preserving perturbations [1].

Constituents carry Semantic Information

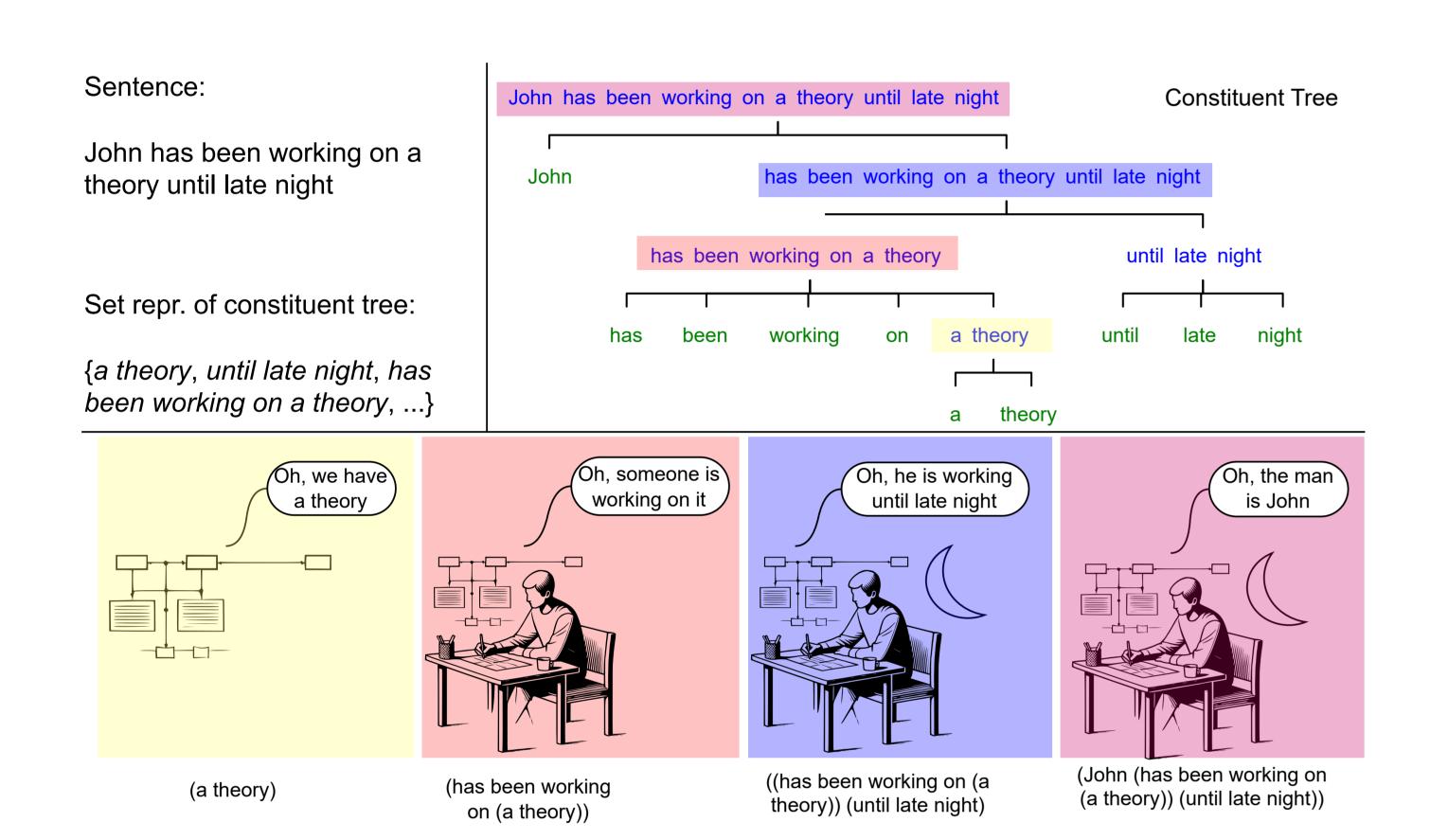


Figure 1. Correspondence between constituent phrases and semantic concepts.

Findings: Complementary Benefit of SemInfo and PCFG-induced Bias

SemInfo and PCFG-induced bias are complementary toward accurate unsupervised parsing.

- Three classes of paraphrasing models represent three levels of paraphrasing noises
- SemInfo improves PCFG parsing accuracy (SemInfo-NPCFG vs. LL-NPCFG)
- PCFG model improves parsing robustness (SemInfo-NPCFG vs. SemInfo-MaxTreeDecoding)

	Paraphrasing Model							
	Large Models			Medium Models		Small Models		
	gpt35	gpt4o	gpt4omini	llama3.2-3b	qwen2.5-3b	Ilama3.2 1b	qwen2.5-0.5b	
SemInfo-NPCFG	66.85±0.25	65.19±0.54	64.45±1.13	63.78±0.55	63.58±0.13	63.10±0.70	59.01±0.24	
SemInfo-MaxTreeDecoding	55.56	59.45	58.28	55.17	55.03	48.5	43.3	
LL-NPCFG	50.96±1.82							
Right Branching				38.4				

Table 1. Parsing accuracy of parsers trained using SemInfo estimated from seven paraphrasing models

Reference

- [1] A. Carnie. Syntax: a generative introduction. Introducing linguistics. Blackwell Pub, Malden, MA, 2nd ed edition, 2007.
- [2] Q. He, H. Wang, and Y. Zhang. Enhancing generalization in natural language inference by syntax. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 4973–4978, Online, Nov. 2020. Association for Computational Linguistics.
- [3] P. Xie and E. Xing. A constituent-centric neural architecture for reading comprehension. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), pages 1405–1414, Vancouver, Canada, July 2017. Association for Computational Linguistics.

Method: Estimating Tree-Semantic Information (SemInfo)

Substring-Semantic Information

We propose to estimate substring-semantic information $I(w_{(i,j)}, Sem(w))$ via the following steps

- introducing a bag-of-substrings representation of sentence semantics based on a paraphrasing model.
- adapting the PWI metric in the bag-of-words model to estimate the substring-semantic information

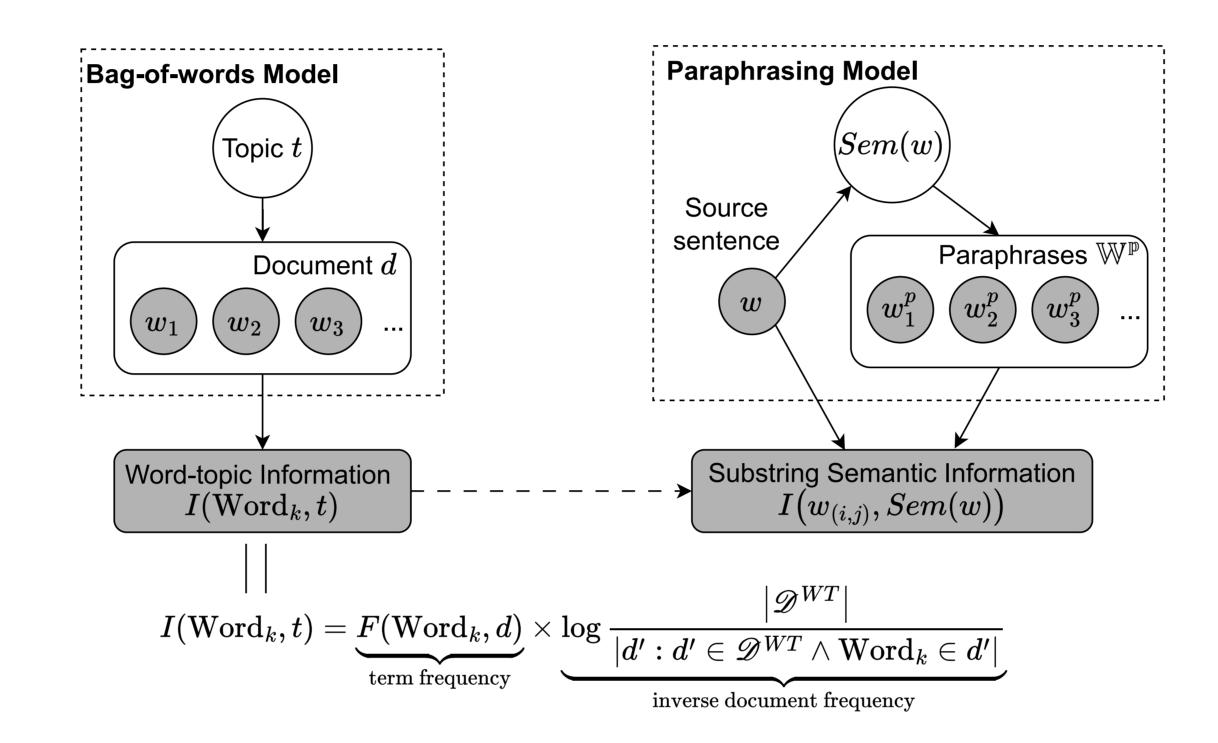


Figure 2. Structural parallelism between our bag-of-substrings model and the traditional bag-of-words model.

$$I(w_{(i,j)}, Sem(w)) = \underbrace{F(w_{(i,j)}, \mathbb{W}^p)}_{\text{substring frequency}} \times \underbrace{\log \frac{|\mathcal{D}^{SS}|}{|w': w' \in \mathcal{D}^{SS} \wedge w_{(i,j)} \text{ is a substring of } w'|}_{\text{inverse corpus frequency}}$$

SemInfo: Tree-Semantic Information

We calculate SemInfo I(t, Sem(w)) as the cumulative substring-semantic information associated with the tree t.

$$I(t, Sem(w)) = \sum_{w_{(i,j)} \in t} I(w_{(i,j)}, Sem(w))$$

Method: Training PCFG Parsers using SemInfo Maximization

We train a PCFG model by maximizing I(t, Sem(w)) through a TreeCRF model.

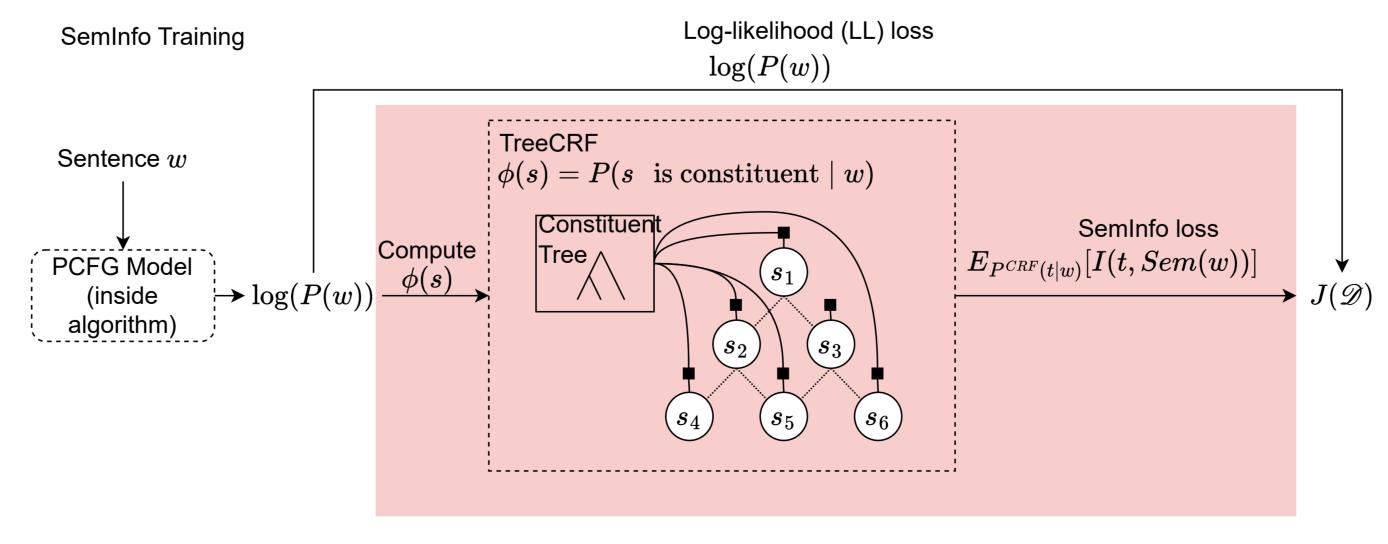


Figure 3. Proposed Training pipeline

Result: SemInfo Training Significantly Improves Parsing Accuracy

SemInfo-trained parsers **significantly** outperform LL-trained counterparts in **17**/20 combinations

	English		Chinese		French		German	
	SemInfo (Ours)	LL	SemInfo	LL	SemInfo	LL	SemInfo	LL
CPCFG	65.74 _{±0.81}	53.75 _{±0.81}	50.39 _{±0.87}	51.45 _{±0.49}	52.15 _{±0.75}	47.50 _{±0.41}	49.80 _{±0.31}	45.64 _{±0.73}
NPCFG	64.45 _{±1.13}	50.96 _{±1.82}	53.30 _{±0.42}	42.12 _{±3.07}	52.36 _{±0.62}	$47.95_{\pm 0.09}$	50.74 _{±0.28}	45.85 _{±0.63}
SCPCFG	67.27 _{±1.08}	$49.42_{\pm 2.42}$	$51.76_{\pm 0.54}$	46.20 _{±3.65}	52.79 _{±0.80}	$45.03_{\pm 0.42}$	47.97 _{±0.76}	$45.50_{\pm 0.71}$
SNPCFG	67.15 _{±0.62}						49.65 _{±0.29}	
TNPCFG	66.55 _{±0.96}	$53.37_{\pm 4.28}$	$51.79_{\pm 0.83}$	$45.14_{\pm 3.05}$	54.11 _{±0.66}	$39.97_{\pm 4.10}$	49.26 _{±0.64}	44.94 _{±1.34}
Average Δ	+13.0)9	+6	.02	+7	.31	+4	.92
SemInfo-MaxTreeDecoding	58.2	8	49	.03	52	.03	50	.82
GPT4o-mini	36.1	6	11	.82	30	.01	33	.56

Table 2. Parsing accuracy (SF1 c) of SemInfo-trained PCFG parsers and other baseline parsers.

Analysis: SemInfo Strongly Correlates with Parsing Accuracy

Why the SemInfo maximization training improves over the LL maximization training?

Sentence-level Analysis: SemInfo Ranking Approximates Parsing Accuracy Ranking

This analysis compares the ranking of predicted trees by SemInfo/LL and that by instance-level parsing accuracy SF1 i . High coefficient \implies SemInfo/LL ranking of constituent trees approximates that by parsing accuracy

- SemInfo has a strong correlation with parsing accuracy
- LL has negligible correlation with parsing accuracy

				8 +	
	SemInfo-SF1 ⁱ	LL-SF1 ⁱ	SemInfo-LL	h X	•
CPCFG	0.6518	0.0223	0.0196	- 9 <u>g</u>	•
NPCFG	0.6347	-0.0074	-0.0045	<u>9</u> 4 -	
SCPCFG	0.6431	-0.0013	0.0505	eml	
SNPCFG	0.9289	0.0102	0.0182	ν̈́ 2 -	•
TNPCFG	0.6449	0.1077	0.1426		2

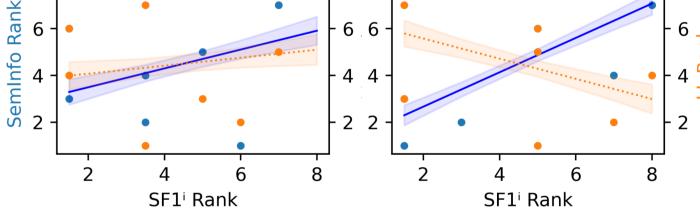


Table 3. Spearman correlation coefficient between SemInfo/LL and $SF1^i$.

Figure 4. Scatter plot of (SemInfo, LL, SF1ⁱ) pairs.

Corpus-level Analysis: SemInfo Consistently Ranks PCFG Parsers throughout Training

This analysis compares the ranking of parsers by SemInfo/LL and that by parsing accuracy SF1 c . High coefficient \implies SemInfo/LL can be applied to training PCFG parsers

- SemInfo maintains a consistently strong correlation with $SF1^c$ throughout training.
- LL has a strong correlation with ${\sf SF1}^c$ at the early training stage, but the strength quickly degrades.

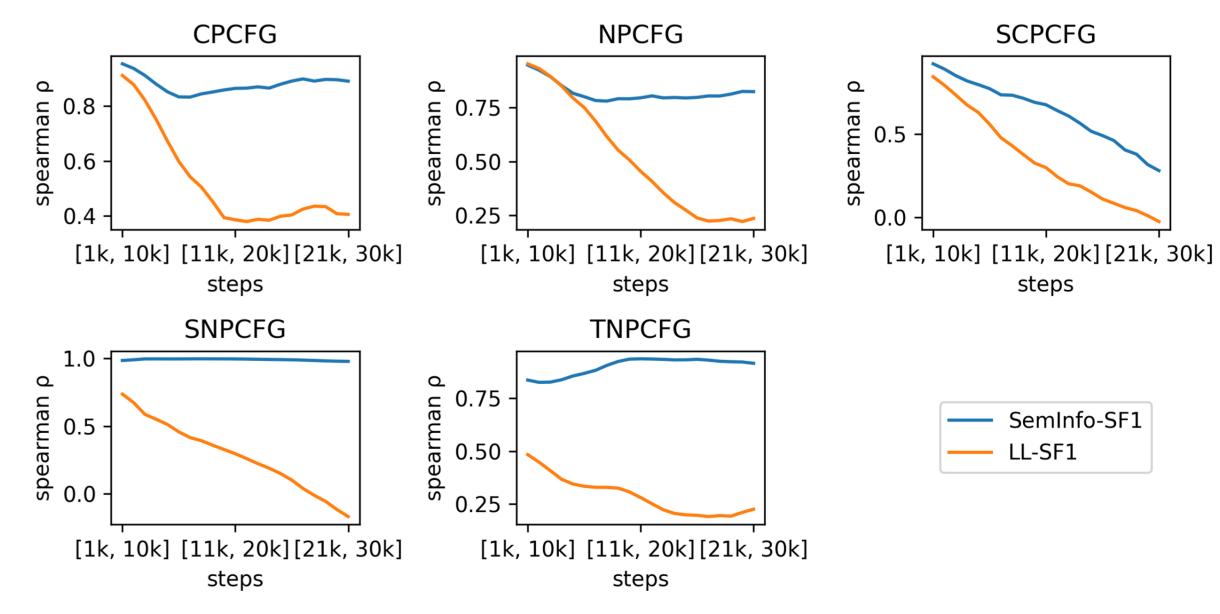


Figure 5. Change of corpus-level correlation throughout training

https://github.chrisjjc.com/iclr25 christopher@is.s.u-tokyo.ac.jp